

This report is submitted in partial fulfillment of the requirements for the degree of
Bachelor of Computing and Mathematical Sciences with Honours (BCMS(Hons))

at The University of Waikato.

COMP520-14C (HAM)

© 2014 Craig Osborne

Investigation into Building an

OpenFlow-enabled BNG

Craig Osborne

Abstract

In carrier-grade Internet Service Provider (ISP) networks the Broadband Net-
work Gateway (BNG) is a specialised network server which sits at the core of
an ISP network. The responsibilities of the BNG include the facilitation and
aggregation of active user sessions from the ISP’s access network, and provid-
ing Internet Protocol (IP) connectivity through the ISP backbone network to
the Internet. In a typical ISP carrier network, the BNG is one of the most
expensive appliances and carries a high degree of responsibility. Due to the
cost, it is common for there be only a single centralised BNG, which presents
a singular point of failure (SPOF) for all ISP subscriber access to the Inter-
net. This project aims to investigate whether the centralised BNG model is
able to be redesigned using a new approach to computer networking called
Software Defined Networking (SDN). Using SDN and the OpenFlow protocol
will allow for the separation of the traffic forwarding logic of a switch from
the data plane, enabling that logic to be moved into an application running in
software. This results in a much more software oriented approach to network
design and the control and configuration of switches. This project aims to
investigate the removal of singular dependence on the centralised BNG model
by distributing the functionality of a BNG among a network of commodity
switches. There is a strong focus on implementing support for a number of
important session establishment protocols and how these can be used to make
necessary dynamic traffic forwarding decisions, as well as the investigation of
a carrier-grade distributed software controller.

Acknowledgements

Firstly, I would like to thank my project supervisor Dr. Richard Nelson for
his support and guidance throughout the course of this project. Additionally,
I would like to thank Brad Cowie and Christopher Lorier from the WAND
group for their advice and valuable input into my project as it has progressed.
I would also like to thank Scott Raynel, Chris Browning and the rest of the
team from Lightwire for their support and valuable insight from the onset of
my project and throughout. Finally, I would like to thank Adam Coxhead for
his advice and input in structuring my project and associated deliverables.

Additionally, I would like to thank Shane Alcock and Brendon Jones from
the WAND group for their proof-reading and editorial input in creating this
report.

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

2 Background 4
2.1 Software Defined Networking and OpenFlow 4
2.2 Broadband Network Gateway 8
2.3 Implementation Tools . 11
2.3.1 Open vSwitch . 11
2.3.2 Ryu . 12

3 Investigation 13
3.1 Software Defined Networking and OpenFlow Technologies . . 13
3.1.1 High Availability . 13
3.1.2 Protocol Support . 17
3.2 Broadband Remote Access Server 18
3.2.1 Current Dependency Reduction Strategies 18
3.2.2 Software Defined Networking and OpenFlow Solutions . . 19

4 Implementation 23
4.1 Broadband Network Gateway Session Aggregation 23
4.1.1 Dynamic Host Configuration Protocol 24
4.1.2 Virtual Local Area Network 29
4.2 Dynamic Flow Creation . 32
4.3 Anonymous Unicast Host Detection 33

5 Evaluation and Discussion 38
5.1 Broadband Network Gateway Session Aggregation 38

Contents v

5.1.1 Dynamic Host Configuration Protocol 38
5.1.2 Virtual Local Area Network 40
5.2 Dynamic Flow Creation . 42
5.3 Project and Technology Limitations or Difficulties 43
5.3.1 802.1ad VLAN Support 43
5.3.2 Controller Scalability . 46
5.3.3 Controller Distributivity 47
5.3.4 API Documentation . 48
5.3.5 Bugs and Software Regression 49

6 Conclusions 51
6.1 Contributions Made . 51
6.2 Future Work . 51
6.2.1 Additional Protocol Support 52
6.2.2 Flow Management and Operational Robustness 52
6.2.3 Additional Authentication, Authorisation and Accounting

Support . 54
6.2.4 Complex Network Topologies 54
6.2.5 Real World Testing and Evaluation 55
6.3 Conclusions . 55

References 57

List of Figures

2.1 OpenFlow 1.3 Protocol and Switch Visualisation 6
2.2 BNG operation in IP-enabled regional ISP network 10

3.1 Apache Zookeeper operation with multiple OpenFlow controllers . 16
3.2 PPPoE session creation with split architecture BNG model 21

4.1 Controlled DHCP session establishment process 27
4.2 Example of basic VLAN port configurations 30
4.3 Anonymous unicast flooded ARP request example 35
4.4 Anonymous unicast ARP response example 36

5.1 802.1ad operation in an ISP network 44

List of Tables

2.1 Example flow table entry . 7

4.1 Packet characteristics for matching DHCP control flow entry . . . 26
4.2 Example flow entry pair for subscriber WAN access 28

5.1 Basic 802.1ad VLAN-stacked ARP packet 45
5.2 Distributed vs. redundant controller comparison 48

List of Acronyms

AAA Authentication, Authorisation and Accounting

ADSL Asymmetric Digital Subscriber Line

API Application Programming Interface

ARP Address Resolution Protocol

ASP Application Service Provider

ATM Asynchronous Transfer Mode

BNG Broadband Network Gateway

BRAS Broadband Remote Access Server

CFI Canonical Format Indicator

CPE Customer Premises Equipment

CVID Customer VLAN Identifier

DEI Drop Eligible Indicator

DHCP Dynamic Host Control Protocol

DSL Digital Subscriber Line

DSLAM Digital Subscriber Line Access Multiplexer

EAS Ethernet Aggregation Switch

HVID Handover VLAN Identifier

IP Internet Protocol

IPoE Internet Protocol over Ethernet

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

List of Tables ix

ISP Internet Service Provider

IWF Interworking Function

L2TP Layer 2 Tunnelling Protocol

L2TS Layer 2 Tunnelling Server

LAC L2TP Access Concentrator

LFC Local Fibre Carrier

LNS L2TP Network Server

MAC Media Access Control

MPLS Multiprotocol Label Switching

NAS Network Access Server

NOS Network Operating System

NSP Network Service Provider

OAM Operations, Administration, Management

ONF Open Networking Foundation

ONT Optical Network Terminator

ONU Optical Network Unit

OVS Open vSwitch

PPP Point-to-Point Protocol

PPPoA Point-to-Point Protocol over ATM

PPPoE Point-to-Point Protocol over Ethernet

QOS Quality of Service

RAS Remote Access Server

ROFL Revised OpenFlow Library

RSP Retail Service Provider

SDN Software Defined Networking

SLIP Serial Line Internet Protocol

List of Tables x

SPOF Single Point of Failure

SVID Service VLAN Identifier

TCI Tag Control Information

UDP User Datagram Protocol

UFB Ultra Fast Broadband

VLAN Virtual Local Area Network

WAN Wide Area Network

WISP Wireless Internet Service Provider

Chapter 1

Introduction

With the introduction of many new technologies and approaches to computer
networking in recent years, there now exist better or smarter ways to imple-
ment existing network models and architectures. Many researchers are en-
gaging with these new technologies in an attempt to discover ways in which
common network architectures may be improved in order to better cater to
the requirements of that network model. One such new technology, Software-
defined networking (SDN) [7], is an emerging approach to computer networking
which allows network administrators to decouple the control plane (the compo-
nent responsible for a device’s decision making behaviour) away from expensive
specialised networking hardware. This enables the abstraction of control logic
for that network hardware to a series of software controllers running remotely
on cheaper commodity consumer hardware. The OpenFlow protocol [18] is one
such SDN communication protocol which allows this relationship to be defined,
allowing communication between these two newly distinct entities - the data
plane (the component responsible for a device’s traffic forwarding capabilities)
and the control plane. This approach allows administrators to define their
own specific traffic forwarding behaviours in the decoupled software control
plane, facilitating the management of entire networks remotely with a series of
custom software-defined rules that can extend the capabilities of typical com-
modity hardware. Such rules or behaviours are installed in network hardware
as traffic flows (modifications to the device’s packet forwarding table), which
are a series of executable actions that are taken when incoming packets match
specific series of pre-defined characteristics.

In existing Internet Service Provider (ISP) networks, one network model that

Chapter 1 Introduction 2

may be improved upon with the advent of SDN is the Broadband Network
Gateway (BNG) architecture, also known as the Broadband Remote Access
Server (BRAS) architecture. In smaller ISP networks where costs may be re-
strictive, a centralised BNG model represents a single point of failure (SPOF)
for the entire ISP subscriber base. If the BNG in this architecture were to fail,
all active ISP subscribers would lose the ability to connect through the ISP’s
access network to the Internet or another service provider, as all subscriber
sessions must traverse the BNG. If the structural principle of non-singular
dependence on any critical appliance can be applied in some manner to this
existing BNG architecture using SDN, it may be possible to improve the ISP
carrier network’s operational capabilities. By decoupling any intermediary
switch’s control planes away from their switching silicon and instead abstract-
ing them to multiple SDN software controllers, it may be possible to increase
the network efficiency and robustness of the ISP carrier network. This can be
achieved by decreasing the dependency on specific individual appliances and
spreading the existing BNG functionality among multiple devices. The ability
for a SDN-capable network to distribute any of these software-defined traffic
forwarding rules across the network itself may help structure the proposed ar-
chitecture into a distributed non-centralised model for which dependence only
exists on controllers for those packets which do not already match any existing
flows. Investigating the plausibility of improving upon the existing ISP cen-
tralised BNG architecture in this manner was the primary motivation for the
conception of this project.

This investigation considers and evaluates the replacement of the existing BNG
architecture with a series of one-to-many software controllers running the Ryu
SDN development framework [10], which implement the same BNG function-
ality by distributing the traffic forwarding logic across a series of OpenFlow-
enabled layer 2 hardware switches, instead of relying on logical dependence
on a single authoritative BNG. To evaluate the feasibility of this approach, a
prototype implementation was constructed with the use of Ryu, and labora-
tory tests were conducted using a series of virtualised hosts interconnecting
through Open vSwitch (OVS) [31].

This report first introduces the background concepts and core workings of SDN
and BNG operation in Chapter 2. In Chapter 3, some of the requirements for

Chapter 1 Introduction 3

a replacement ISP BNG system are outlined and related works are discussed.
Chapter 4 presents ways in which the outlined requirements can be addressed
with an OpenFlow inspired system design using constructed OpenFlow con-
trollers and flow mechanisms. Finally, Chapter 5 contains the evaluation and
discussion of presented approaches, including deployment scenarios and real-
world limitations. Project conclusions, contributions and discussion of future
work are provided in Chapter 6.

Chapter 2

Background

There are many concepts and protocols integral to the development of any
software controller-based solution for this project, primarily revolving around
the SDN and OpenFlow concepts and the BNG’s current purpose and func-
tion. Relevant SDN and OpenFlow concepts which make this project possible
form the basis of Section 2.1. Section 2.2 introduces the BNG, its background
and general behaviours, and the rationale behind improving upon its existing
architecture. Lastly, Section 2.3 briefly describes the tools which will be used
to build and implement this project.

2.1 Software Defined Networking and OpenFlow
Traditional network switches are comprised of two distinct planes; the data
plane which is responsible for the forwarding of packets through the switch,
and the control plane which is responsible for making decisions on how to
forward those packets. Traditionally, these two planes exist within the same
physical switch and are tightly coupled together. SDN allows these two en-
tities to be abstracted away from one another, separating a network switch’s
control plane away from its data plane. This allows for the control plane to
be moved to a software application running remotely. This concept allows
for a control plane to enjoy a higher degree of abstraction than is the norm
in network switches, i.e. software can be written to dynamically determine
the configuration of any switches being controlled, as opposed to the strict
hierarchy of behaviours that a switch’s control plane would otherwise use to
govern data plane traffic forwarding. This remote control plane entity govern-

Chapter 2 Background 5

ing traffic forwarding behaviours is aptly named the controller, although it
is also known as a Network Operating System (NOS). As a result of us-
ing a controller, network administrators gain unprecedented programmability,
automation, behavioural visibility, and control over their switch’s operation,
enabling them to design and build highly scalable, flexible networks that read-
ily adapt to changing needs. SDN supports these characteristics by opening
access to the control plane where previously it had been considered a black
box entity. Subsequently a SDN-capable network switch with an abstracted
control plane would no longer be bound to the same inherent limitations tra-
ditional switches are. This can permit the extension of switch functionality
without the need to modify the existing switch hardware or firmware. Fur-
thermore, SDN enables researchers and administrators to easily experiment
with new network protocols and configurations on production networks con-
currently alongside existing systems, without any negative impact. This can
allow network operators to introduce higher degrees of network flexibility, ef-
ficiency and provisioning agility into their networks, while keeping operating
expenses and capital expenditure down.

The relative infancy of SDN means that the standardisation of its related pro-
tocols is still taking place, as contributors seek to interface with other older
well-defined networking standards and protocols. This inevitably leaves room
for students, researchers and administrators to address the development of new
or compatible implementations of existing networking models and protocols,
presenting them with the opportunity to improve the way existing network
models operate [3].

OpenFlow is widely considered one of the first SDN standards and outlines
the communications protocol which allows separated or decoupled control and
data plane entities to communicate with one another. OpenFlow also provides
a switch specification which allows the configuration of a switch via the same
protocol. Originally it was designed as a tool by which researchers were able to
run experimental protocols on existing networks by way of separating exper-
imental traffic from production traffic [18]. However, as discussed in [8], [11]
and [19], the advantages of SDN solutions using OpenFlow introduces viable
use cases outside the research space. The primary idea behind the OpenFlow
protocol is to provide an open Application Programming Interface (API) for

Chapter 2 Background 6

the configuration of and interaction with the packet-forwarding hardware of a
switch, regardless of the switch’s vendor or underlying hardware. It allows for
a controller to be logically centralised in a network, providing a basis on which
new behavioural approaches to existing network architectures or models can
be undertaken.

Figure 2.1 shows a basic visual representation of the relationship between an
OpenFlow controller and an OpenFlow-enabled switch. Here the switch con-
sists of two primary parts: a secure channel and a series of flow tables. The

Figure 2.1: OpenFlow 1.3 Protocol and Switch Visualisation

Chapter 2 Background 7

controller manages the switch over the secure channel using the OpenFlow pro-
tocol and each flow table performs packet lookup, matching and forwarding
[25]. Each flow table is used in this context to determine a packet’s destina-
tion and decide how the switch subsequently forwards it on. Each flow table
consists of a series of flow entries, which each consist of a series of different
components. “Flow” in this context is defined as a series of packets that match
a particular rule. Using OpenFlow, any packet that does not match any of the
currently established flow rules held within the switch’s flow table will be sent
to the controller, which in turn decides how to handle the packet. The Open-
Flow protocol allows a controller to insert, modify and remove these flow table
entries dynamically allowing for the rapid and flexible reconfiguration of the
switches. The first element in a flow table is “match fields”, which are the
fields of a packet header or associated meta data which determines whether a
packet matches a specific flow or not. A series of different match fields may
be used in conjunction with one another to define a directive or a rule for a
packet to follow. An example of a rule based on match fields would be one that
assigns packets to flows based on the data stored in either the source or desti-
nation Media Access Control (MAC) address fields in the Ethernet header. In
such a case, any packets containing the same source and destination address as
determined by the rule would belong to the same common flow and would be
handled according to the instructions in the flow table. An example of what
that flow entry might look like is shown in Table 2.1.

Match Fields Priority Counters Instructions Timeouts Cookie
dl src=00:11:22:33:44:55, priority= duration=803s, action= duration= cookie=
dl dst=aa:bb:cc:dd:ee:ff 100 n packets=6, output:5 3600s -687779960

n bytes=688

Table 2.1: Example flow table entry

The next element in a flow table entry is the “priority” field, which determines
the precedence of the flow entry, allowing flow rules with a higher priority to
be chosen over those with a lesser priority. Next is the “counters” field, which
updates the internal packet counters and maintains an awareness of how many
packets are being forwarded through each specific flow. The “instructions”
field follows afterwards, which determines what actions should occur upon re-
ceipt of packets matching the specific rule criteria. In the earlier example,
the instructions field could be configured to forward packets through a specific

Chapter 2 Background 8

port or interface on the switch if the previously determined matching criteria
(source/destination MAC addresses) were met. In Table 2.1, the instruction
field determines that any packets matching these criteria are forwarded out of
port 5 of the switch. Lastly, the remaining fields in the flow table include the
“timeouts” field, which determines how long a flow can exist for or remain idle
in the flow table before being expired by the switch, and the “cookie” field,
which is used in administrative tasks performed by the switch.

Since the OpenFlow switch specification version 1.0 released in 2009 [22], there
have been four iterations of the OpenFlow standard [23, 24, 25, 27], with the
next version (1.5) expected in late 2014 [4, 28]. OpenFlow switch specifica-
tion 1.0 was widely considered the first official specification of the OpenFlow
standard, and represented the first standardisation for which an OpenFlow
switch could be constructed from. This specification remains the most com-
mon and widely supported version of OpenFlow. Each subsequent version
of OpenFlow introduced additional features into the standard which would
prove integral to the feasibility of this project. OpenFlow 1.1 introduced sup-
port for multiple flow tables that allowed the introduction of more complex
forwarding actions inside a switch, and Virtual Local Area Network (VLAN)
tag support for handling packets with a hierarchy of multiple VLAN tags [9].
OpenFlow 1.2 introduced more extensible matching criteria for packet parsing
and multiple-controller functionality for maintaining simultaneous connections
between multiple OpenFlow controllers using roles. OpenFlow 1.3 includes the
most significant changes and improvements to the specification since OpenFlow
1.0, adding flexible table-miss support for better handling of packets which do
not already match existing flows and Quality of Service (QoS) capabilities
through per-flow meters. OpenFlow version 1.3 has been used for the con-
trollers created for this project. Newer versions of OpenFlow exist, but these
are either not widely supported yet or are still being written.

2.2 Broadband Network Gateway
The ISP BNG model has seen many iterative changes since originally describ-
ing a Remote Access Server (RAS) for dial-up Internet access over the public
switched telephone network. The RAS was an access server that acted as a

Chapter 2 Background 9

network gatekeeper for an ISP and was responsible for facilitating network
access for incoming subscriber sessions off an access network using either the
Serial Line Internet Protocol (SLIP) or Point-to-Point Protocol (PPP). As
Digital Subscriber Line (DSL) broadband was gradually introduced, the RAS
model was modified to suit the needs of the newer Asynchronous Transfer Mode
(ATM) based Asymmetric DSL (ADSL) technology, in what would become the
BRAS [1]. The BRAS filled fundamentally the same role as network gatekeeper
and session aggregator. The BRAS served for several years before being mod-
ified to accommodate newer non-ATM technologies and as Internet Protocol
(IP) QoS capabilities became necessary [39, 40]. As broadband technologies
continued to evolve, Ethernet-based DSL aggregation became prevalent and
the BNG was formally defined [41]. The BNG encompassed the function-
ality of the BRAS, but as the BNG did not form a required component of
new Ethernet-based architectures, the use of the BNG title was required to
clarify between these two different appliances. The new Ethernet-based net-
works often delegated subscriber session establishment to alternate non-PPP
protocols, such as IP-over-Ethernet (IPoE) (including other protocols such as
Dynamic Host Configuration Protocol (DHCP) and VLAN). As such, mod-
ern day BRASs and BNGs now require a greater range of supported protocols
and session management capabilities to better serve a wide range of different
network access mediums. These appliances facilitate the capability to support
access-media-agnostic IP-based access networks, allowing for the extensible
migration from ATM-based DSL to other technologies [12].

The BNG typically functions at the core of an ISP network infrastructure and
is responsible for aggregating incoming subscriber sessions coming from an ac-
cess network (i.e. ADSL, Ultra Fast Broadband (UFB) fibre or 802.11-based
wireless) and enforcing subscriber-associated policy. The subscriber sessions
are then forwarded through the ISP IP core by the BNG to an edge router
or another termination point (i.e. a Layer 2 Tunnel Switch (L2TS), Network
Service Provider (NSP) or Application Service Provider (ASP)). Figure 2.2
depicts a basic BNG architecture and shows the relationship that exists be-
tween the BNG and a number of other components in an ISP network. In
this example, which has been simplified to show a single subscriber and access
medium, the BNG receives the active subscriber session from an ADSL-based
access network. The access network consists of a Customer Premise Equip-

Chapter 2 Background 10

Figure 2.2: BNG operation in IP-enabled regional ISP network

ment (CPE) at the edge of the customer network, which allows the subscriber
traffic to access the copper telephone lines through a modem. The Digital
Subscriber Line Access Multiplexer (DSLAM) aggregates the analog signals
carried across the individual subscriber DSL circuits. The analog data is sub-
sequently transported in ATM packets to the ISP network and into the BNG
where it is facilitated for authorisation and authentication accordingly. The
CPE authenticates with the ISP using PPP over ATM (PPPoA)1 to encapsu-
late its associated subscriber session establishment information and the BNG
will either terminate each PPPoA session itself or facilitate doing so through
a Network Access Server (NAS) or one of the other connected Authentica-
tion, Authorisation and Accounting (AAA) servers. Depending on whether
the PPPoA session credentials were correct and what policy may exist for this
subscriber, the BNG either then forwards subsequent subscriber traffic through
the ISP network to the appropriate destination or rejects the authentication
attempt outright. Appropriate destinations for subsequent subscriber packets
to be forwarded to include typical endpoints, such as a Layer 3 IP router for
external network access (e.g. the Internet), a L2TS (to handle additional PPP
encapsulation) or another Layer 2 switch.

There are many different ISP architectures which may involve a BNG appli-
ance. One issue with the architectural model presented in Figure 2.2 is that

1Applicable to this example only. CPEs may authenticate using a number of protocols,
such as PPP over Ethernet (PPPoE) or Internet Protocol over Ethernet (IPoE)

Chapter 2 Background 11

the BNG is a SPOF for subscriber access to the Internet or other service
providers. Although many ISP network configurations contain more than a
single BNG, this single centralised BNG configuration is still common, espe-
cially among smaller ISPs. Even though most BNG hardware itself is classified
as a carrier-grade appliance (which carries 99.999% availability expectations)
this dependency is not just problematic from a fault or failure point of view.
Full BNG appliances regularly extends beyond simply the price of the physi-
cal hardware (i.e., support, licensing, and add-on card costs) so scaling to the
requirements of the network by acquiring multiple or redundant BNGs can
result in substantial costs to the ISP itself.

This project looks at addressing and removing the dependency on a centralised
BNG appliance in modern-day ISP network architectures by moving away from
a centralised model to a distributed, decentralised one using SDN concepts and
technologies. This will offer an improved architecture not just to those net-
work configurations where a sole BNG facilitates all subscriber aggregation,
but also to other network configurations where distributing and bringing the
BNG functionality closer to the subscribers themselves may have performance
advantages. Using SDN and OpenFlow, it is hoped this project introduces
advantages such as increases to speed, versatility and robustness of the ISP
network model, as well as subsequent reduction of costs associated with the
construction and ongoing support of that network.

2.3 Implementation Tools

2.3.1 Open vSwitch

OVS is an open source multilayer virtual switch. It has been designed as both a
switching stack for hardware virtualisation and a production-ready multilayer
switch, allowing for both the creation of complete virtual Layer 2 networks
on a single host and control stack functionality for actual hardware switches.
OVS has native support for OpenFlow versions 1.0-1.3, and since the release
of OVS version 2.3.0 also mostly supports later OpenFlow versions (1.4, 1.5).
Due to the obvious limitations of building and emulating a sufficiently sized
real-world ISP network configuration for this project, OVS is an excellent tool

Chapter 2 Background 12

to realistically design and simulate OpenFlow-enabled network architectures.

2.3.2 Ryu

There are many open source OpenFlow controllers currently available, includ-
ing Beacon [5], Floodlight [6], Trema [44], OpenDaylight [29] and Ryu [10].
Among these different frameworks, only Ryu includes support for all of the
OpenFlow versions discussed in Section 2.1, whereas the other noted frame-
works mostly only support OpenFlow version 1.0 in an official capacity. Ryu is
a Python-based framework and is highly suitable for rapid prototyping. Ryu
offers a component-based SDN framework which provides software components
backed by a well-defined API. Ryu makes it easy for developers to create and
build new network management and control applications, and supports vari-
ous network device management protocols. In this project Ryu has been used
to design, build and implement various OpenFlow controllers to achieve the
outlined goals of the projects.

Chapter 3

Investigation

3.1 Software Defined Networking and OpenFlow
Technologies

This section is focused on investigating concepts and discussing research in the
area of SDN and the OpenFlow protocol which may influence the direction of
the project. It will address some of the concepts and research being carried
out in the area of high availability OpenFlow controllers, as well as work in-
vestigating the necessary supported network communication protocols. The
practical realisations, implementation details and limitations of these areas
will also be explored in the context of achieving the project aims.

3.1.1 High Availability

One of the primary motivations in the context of reducing dependency on spe-
cific system components is high availability of the system itself, i.e. operational
availability of the system that is able to be maintained continuously for long
periods of time. This is often achieved with failover mechanisms and system
redundancy, which allow the system to continue to function even if some oper-
ational components of that system were to fail. In order to sufficiently reduce
the singular dependence on a centralised BNG in existing ISP architectures,
any developed distributed BNG architecture must maintain this property of
high availability. Given that one of the primary aims of this project is to re-
duce singular dependence on the BNG appliance, any architectural model that
is designed to replace it should not suffer from the same singular dependence

Chapter 3 Investigation 14

vulnerability. Some of the mechanisms investigated to introduce high avail-
ability into this project are discussed below.

Distributed OpenFlow Controllers

OpenFlow controllers capable of operating concurrently in a distributed fashion
are an important step towards achieving high availability in this project. Rely-
ing on a single OpenFlow controller fails to introduce a reduction in dependence
from a single BNG, and therefore the introduction of additional controllers
would be advisable. Additionally, the Ryu OpenFlow controller framework
does not support multi-threading and will subsequently fail to scale success-
fully to cater for the large throughput values that a BNG would encounter
[33]. Therefore, one solution to this problem would be to introduce multiple
OpenFlow controllers which are able to distribute the governance and load of
the network amongst themselves equally, removing both the singular depen-
dency and throughput scale issues. This contributes towards high availability
by distributing the total network load across multiple points-of-presence mean-
ing that no single controller is expected to facilitate the establishment of all
required subscriber flows. A controller framework structured this way could
also continue to function in the absence of all participating controllers, intro-
ducing redundancy to the architecture. Furthermore, OpenFlow controllers
implemented in this fashion gain the additional advantage of being able to be
deployed closer to their target switches, introducing speed advantages to the
network by virtue of reducing the latency of the behavioural control and traffic
forwarding interactions between the controller and switches.

One of the major pitfalls of running a distributed series of OpenFlow controllers
is the requirement for controllers to freely exchange state information about
the network switches they govern. While there have been a number of stud-
ies conducted on distributed controller frameworks which appear to achieve
this property [14, 35, 43], no mechanism yet exists for this functionality to
be achieved using Ryu. Given that an investigation into achieving OpenFlow
controller distributivity using Ryu is a research question in its own right and
is too large in scope for this context of this project, the decision to pursue
a distributed controller framework for this project was therefore investigated
but not implemented.

Chapter 3 Investigation 15

Redundant OpenFlow Controllers

As noted in Section 2.1, the OpenFlow switch specification from version 1.2
onwards describes mechanisms for OpenFlow controllers to exchange role in-
formation between themselves. The roles the controller may take vary between
‘equal’, ‘master’, and ‘slave’. The ‘equal’ role (OFPCR ROLE EQUAL) is the
default role that the controller will take unless otherwise specified. This gives
the controller full access to a switch and its associated asynchronous messages
used for governance, as well as full flow table read/write capabilities. The
disadvantage of the ‘equal’ role is that multiple controllers may share this
role equally and contest governing a given switch individually instead of col-
lectively. The switch does not facilitate any arbitration or resource sharing
between the controllers [26], so it is wasteful to have multiple controllers vying
for control of the same switch without first synchronising state information
to establish between those controllers any prior behavioural traffic forwarding
decisions made on the switch’s behalf.

The remaining ‘master’ and ‘slave’ roles (OFPCR ROLE MASTER and OF-
PCR ROLE SLAVE respectively) allow the controllers to be configured in a
redundant relationship. The ‘master’ controller role is similar to the ‘equal’
controller role, except in any controller configuration it is expected there will
be only a single master controller. This master controller retains the full
read/write capabilities for each governed switch’s flow table and other control
messaging mechanisms. Any remaining controllers in this master/slave config-
uration are marked as slaves and therefore are only permitted read-only access
to the switch. Slave controllers are denied the ability to execute any controller-
to-switch commands. Additionally, the roles can freely be exchanged between
controllers in the configuration. If a slave controller were to decidedly rise to
the role of master, the intermediary switches immediately notify and forcibly
change the existing master controller to the ’slave’ role. A role request mech-
anism (OFPT ROLE REQUEST) is used to facilitate this change.

The role request mechanism enables administrators to easily tie active con-
troller states to external watchdog applications as a way of monitoring the
health of the controllers in a common configuration. Such a mechanism allows

Chapter 3 Investigation 16

Figure 3.1: Apache Zookeeper operation with multiple OpenFlow controllers

the election of a new master controller in the case that the existing master con-
troller fails or an event determining that the controller roles should change oc-
curs. One example of an open source application capable of achieving this with
the Ryu controller framework is Apache Zookeeper [38]. Apache Zookeeper can
be used to achieve high availability with a series of OpenFlow controllers by
maintaining an awareness of the current status or role of any controllers in the
configuration. If the master controller in the configuration were to match a
predetermined failure condition or stop responding, Zookeeper is able to trigger
an event and notify the remaining slave controllers, subsequently causing a new
master controller election process among the slave controllers. A basic exam-
ple of this relationship is visually represented in Figure 3.1. Zookeeper helps
ensure high availability of the controllers by facilitating an elegant failover
mechanism. However, Apache Zookeeper does not achieve high availability
on its own. Administrative attention is still required to remedy any ‘failed’

Chapter 3 Investigation 17

controllers. Fortunately, Zookeeper can likely lend itself to a comprehensive
stateful monitoring system by notifying administrators of changes to the con-
troller configuration. The disadvantage of this approach however is that all
flow creation still takes place on a single controller at a time.

3.1.2 Protocol Support

An important consideration to achieve a viable BNG replacement architecture
for this project was determining which required communications protocols were
supported and able to be handled or parsed by the Ryu OpenFlow controller
framework. As evidenced by [40] and [41], a standardised BNG is required to
understand and handle a substantial number of different protocols with specific
configuration requirements in order to both support end users on an access net-
work and connectivity to upstream NSPs or ASPs1. Any developed OpenFlow
controller needs to facilitate the handling of these protocols in an agnostic
manner and have the ability to forward any related packets to the correct
destinations, for instance from a Layer 2 Tunnelling Protocol (L2TP) Access
Concentrator (LAC) through to an L2TP Network Server (LNS) for L2TP
traffic, or a DHCP Server for DHCP IP lease establishment traffic. Therefore,
the controller must be able to read, analyse, and categorise different packets
based on values extracted from various Internet Protocol Version 4 (IPv4) and
Internet Protocol version 6 (IPv6) packets, Ethernet frame header fields, or
encapsulated packet data payloads.

Ryu contains a moderately sized API and packet library with support for a
number of common protocols [32]. Despite the absence of existing API calls for
several necessary protocols such as L2TP and PPP over Ethernet (PPPoE),
the full contents of layer 3 IP packets are exposed to the controller. This
gives developers the ability to extract IP layer headers and payloads individ-
ually from each packet the controller is forwarded. Subsequently, developers
are able to write protocol handling functionality into their controller, or alter-

1The exception to this are those protocols which do not get encapsulated inside Ethernet
frames and do not present as Ethernet to a layer 2 Ethernet switch, such as ATM-based
DSL networks which still use ATM upstream of the DSLAM. In order to accommodate
ATM-based DSL networks, the assumption has been made that an interworking function
(IWF) will be present in modern day DSL-based access networks in order to allow the
DSLAM to present aggregated subscriber sessions encapsulated inside Ethernet frames.

Chapter 3 Investigation 18

natively use a third-party packet library such as libpcap [15] with scapy [2].
While the ability to expose packet data and process it with custom-written
protocol handlers is a useful capability, it would have been preferential if the
Ryu framework supported a wider range of protocols by default. One likely
reason for the lack of supported protocols for carrier-grade ISP networking
using Ryu is the lack of support for these protocols in OpenFlow itself.

3.2 Broadband Remote Access Server
This section focuses on investigating concepts and discussing existing works on
the existing BNG architecture which may influence the direction the project
ultimately takes. Existing practical realisations and implementations will be
discussed as well as any limitations of these approaches with respect to this
project.

3.2.1 Current Dependency Reduction Strategies

Carrier network architectures employ a number of approaches to distribute the
necessary functionality of the BNG appliance out to other devices in order to
reduce any inherent SPOF vulnerabilities present in the basic model depicted
in Figure 2.2. These approaches do not replace the BNG appliance itself but
rather simply distribute its functionality among multiple appliances. These
approaches typically employ specifically designed carrier network architectures
and are commonly seen in larger ISPs. Some of these architectures use multiple
BNG appliances distributed among a series of variably-sized regional networks
such that a SPOF may still remain for a given access network but may only
affect a smaller geographically-locked subset of subscribers. Other approaches
cluster multiple BNG appliances together to ensure high availability of the
session aggregation capabilities by failing over to secondary or tertiary appli-
ances in the event of a fault or failure [36]. These approaches help remove
the SPOF vulnerability associated with using a single centralised BNG appli-
ance, but carry a high cost. The cost can be restrictive for smaller ISPs and
can present a barrier to entry in a competitive market place, therefore lending
merit to investigating alternative BNG approaches. Those approaches which
look to resolve this dependency but do not rely on dedicated BNG appliances

Chapter 3 Investigation 19

are few in number, but those which have been documented aim to distribute
the embedded functionality of the BNG among other network appliances to
remove specific dependencies.

One such approach to distributing functionality typically handled by the BNG
appliance was presented in [17]. The presenter described a Wireless ISP
(WISP) where a series of PPPoE termination servers or NASs were load bal-
anced behind the primary router at the access network edge. A load balanced
solution between multiple PPPoE termination points allowed users connecting
and authenticating through this wireless access network to be equally dis-
tributed among a series of servers. Such an approach not only ensured high
availability for the authentication service itself through the use of multiple
end points, but also enabled a solution that scales to the requirements of the
network. Using such an approach would easily facilitate the addition of more
NASs, enabling the network administrators to respond to subscriber growth
easily with additional hardware. The physical topology of such an approach
could additionally be designed in order to provide authentication server ser-
vices much closer to the subscriber base than modern architectures do. The
speed at which session negotiation is facilitated could therefore be improved.
Additionally, this approach could be improved by distributing the function of
the access network edge router among multiple edge routers such that any
SPOF is not simply moved closer to the customer by having all subscriber
sessions route through a single common appliance.

3.2.2 Software Defined Networking and OpenFlow Solutions

There have been a number of projects looking to improve carrier networks us-
ing SDN and OpenFlow. Many of these projects have revolved around defining
and developing mechanisms to support subscriber access convergence and ag-
gregation using these technologies. One of the major projects investigating this
area is the SPARC Consortium’s FP7 project [42], which is extending exist-
ing carrier networks by introducing SDN-facilitated split architectures in order
to introduce more dynamic network control and connectivity into the carrier
network. The SPARC Consortium define their project as the investigation of
splitting the traditionally monolithic IP router architecture into separate for-
warding and control components using OpenFlow. One of SPARC’s specific

Chapter 3 Investigation 20

target areas of research is improving the OpenFlow protocol for use in car-
rier networks and researching how it may be deployed to achieve IP router
functionality similar to that of a BNG appliance. In some of their resulting
publications [13, 34] they suggest that the OpenFlow version 1.0 standard lacks
in support for carrier grade network operation in areas such as supported com-
munications protocols, inter-domain capabilities, and failure recovery. Their
investigation into different facets of redesigning the carrier network architec-
ture using OpenFlow have resulted a number of relevant publications, some of
which are discussed below.

In [13], a SDN use case involving distributed BNG functionality is presented as
a realised component of a carrier network split architecture. The use case is an
OpenFlow-enabled carrier network and investigates how the former BNG’s role
in terminating PPPoE traffic is able to take place without a dedicated BNG
appliance. The authors theorise that the actual termination of any PPPoE
sessions will need to be abstracted to a separate NAS architecture (termed
‘PPPoE application’), which connects to an OpenFlow controller. The con-
troller is used to create and manage any initial flows between the PPPoE end
points and intermediary network devices, as well as interfacing with the NAS
for PPPoE control and access concentration. The flow creation process will
need to create flow table entries in intermediary devices that allow the PP-
PoE application to receive both PPPoE discovery packets and PPP session
packets. The forwarding of those packets will be able to be facilitated by those
OpenFlow-enabled intermediary devices based on these flow table entries. This
model however has only been outlined as an initial design, with the authors
conceding that any processing performed by the PPPoE application will re-
quire extensions to the current OpenFlow protocol. However, this particular
distributed BNG model would have the disadvantage of being very slow at
forwarding PPP-based traffic if implemented. The PPPoE application in this
model is described as interfacing directly with the controller, rather than with
the common layer 2 network, which is also known as the ‘OpenFlow fast path’.
This would mean that any PPPoE/PPP traffic required to reach the PPPoE
application would have to be forwarded directly through the controller, rather
than through the common network. This would substantially contribute to-
wards a high load on the controller itself and in a production network would
not scale to a great number of users. A visual representation of this model is

Chapter 3 Investigation 21

depicted in Figure 3.2.

An additional paper that investigates an OpenFlow based BNG architecture
is presented in [45]. It presents a prototype OpenFlow BNG and, similarly
to other papers discussed above, investigates an OpenFlow-based architecture
capable of terminating the PPPoE protocol. In this paper, the developed
OpenFlow implementation was extended to include the Revised OpenFlow
Library (ROFL) as a series of vendor extensions to accommodate PPPoE sup-
port. Using ROFL enabled the authors to support the encapsulation/decap-
sulation of PPPoE and PPP on the data plane, as these protocols are not
yet defined in the OpenFlow standard. The outlined approach for handling
these network protocols showed similarities to the design described in [13],
whereby the PPPoE discovery frames (identified by a unique EtherType value
of ‘0x8863’) are sent to the OpenFlow controller for session establishment.
PPP session frames (identified by a unique EtherType value of ‘0x8864’) are
subsequently handled solely on the data plane. The authors also outlined that

Figure 3.2: PPPoE session creation with split architecture BNG model

Chapter 3 Investigation 22

an important consideration for a model in which PPPoE is supported by an
OpenFlow-enabled network is the ability to track the present states of those
PPPoE sessions which are currently active. They stipulated that although
initial designs handled session state in the controller, the use of virtual ports
which encapsulate session state was under consideration as a more efficient
alternative. This paper shows that if OpenFlow-based technologies are to be
presented as a viable approach for improving upon existing carrier network
models and architectures, the OpenFlow standard must include more support
for typical carrier network protocols. Although it is promising that some func-
tionality for this family of protocols is obtainable through the use of vendor
extensions, it is worth noting that vendor extensions are typically bound to
vendor specific hardware and therefore make widespread adoption in carrier
networks difficult. Fortunately, a precedent has been set by the OpenFlow
development team. Multiprotocol Label Switching (MPLS) protocol support
for OpenFlow was in strong demand and began as a third-party documented
extension to the OpenFlow 1.0 standard. MPLS later became one of the first
new protocols to be supported in the OpenFlow 1.1 standard, so it is likely
that there will be more protocol support as the standard continues to mature.

Chapter 4

Implementation

4.1 Broadband Network Gateway Session
Aggregation

As mentioned in Section 2.2, this project examines using SDN and more specif-
ically the OpenFlow protocol to explore solutions for reducing dependency on
the centralised BNG carrier network model. The focus on addressing this
aspect of ISP networks was chosen as it represented a common network config-
uration which could be potentially improved with the use of SDN technologies.
This project started by addressing the implementation of mechanisms to handle
the following basic session establishment protocols and standards for reasons
outlined:

• DHCP
DHCP is an IP-based protocol which provides a mechanism for hosts to
be assigned addresses using a common IP address scheme. This allows
hosts to intercommunicate with one another on the same IP network. It
is commonly used on both metropolitan-area and large scale Ethernet
based networks to allow subscriber connections to gain network access
through the BNG appliance.

• VLAN
VLAN is a mechanism that allows network administrators to create sub-
sets of network domains such that hosts behave as though they are on
the same physical wire as one another, even though they may be on
entirely different network segments. VLANs use a tagging system to

Chapter 4 Implementation 24

uniquely identify these domains and forward Ethernet frames to them
accordingly. It is commonly used on both metropolitan-area and large
scale Ethernet based networks to divide up layer 2 access networks into
specific domains and can be used to help apply and manage policy for
different network segments. In an ISP, 802.1ad VLAN stacking can be
used to transparently encapsulate point-to-point customer VLAN infor-
mation, allowing hosts at different network endpoints to communicate
on the same layer 2 network as facilitated through the ISP network.

These protocols have been implemented first with the assumption that modern
day BNG’s primarily serve subscribers from Ethernet-based access networks.
The goal of implemented support for these protocols is to facilitate the con-
necting of subscribers through the distributed BNG switching fabric and au-
thorisation mechanisms. Once a subscriber is successfully authorised on to the
network, their active session is provided internet access by forwarding their
traffic through internet-accessible flows. This enables end-to-end connectivity
between the two end points with the distributed BNG in the middle.

Basic support for these protocols represented the introductory stage of this
project, as together these protocols represent the most basic session establish-
ment mechanism to implement: IPoE. Implementing IPoE first would allow for
a background and familiarity with the problem domain and implementation
tools to be developed, before additional protocols were investigated or imple-
mented.

4.1.1 Dynamic Host Configuration Protocol

In order to implement support for DHCP in a software controller, some basic
principles about the protocol operation needed to be fully realised. The DHCP
protocol requires a server on a network which listens for incoming DHCP pack-
ets broadcast over that network. A client who wishes to lease an IP address to
communicate on the network broadcasts a DHCP Discover request out to the
whole network, attempting to discover whether there are any DHCP servers
on the network listening. If a DHCP server receives a discovery broadcast
packet, it will reserve an IP address for the client (either randomly or one that

Chapter 4 Implementation 25

a client has requested) from a pre-determined pool of addresses, before sending
a broadcast DHCP Offer packet back into the network in reply. Although this
packet is broadcast to the entire network, it contains the clients unique MAC
address in order to differentiate this offer between any other DHCP offer pack-
ets being actively exchanged to other hosts. Once this DHCP Offer packet is
received by the original client, the client then makes an official request for that
address and broadcasts it onto the network once again this time as a DHCP
Request packet. The request packet is handled in this fashion so that any other
DHCP servers which may also have responded to the initial discovery packet
with their own offer are notified of which lease the client is accepting and can
subsequently withdraw any unwanted respective DHCP offers and return the
reserved IP addresses back into their pool. Finally, the DHCP server com-
pletes the establishment phase by replying to the DHCP Request packet with
a broadcasted DHCP Acknowledge packet, which contains lease information
and completes the IP-lease negotiation once received by the requesting client.
A client which reaches this state now applies its leased IP address and is subse-
quently free to participate in the network. This basic negotiation process can
be referred to as the DHCP DORA (Discover, Offer, Request, Acknowledge)
handshake.

The DHCP protocol also supports features other than the basic IP address
lease negotiation sequence which need to be considered. These features in-
clude variable-length packet embedded DHCP options and also the basic IP
lease termination or rejection control phases. To offer a regular level of support
for the DHCP protocol, these would needed be implemented in the controller
also.

The DHCP implementation approach uses specific flows to facilitate the sub-
scriber IP lease negotiation process. The created flows are crafted to know how
to direct broadcast traffic matching specific user datagram protocol (UDP)
source and destination port numbers to the DHCP server itself, and the con-
troller knows how to return those responses back to the subscriber. Addition-
ally, the controller is able to extract specific options from the DHCP packets
themselves. Most importantly, among the different options is DHCP option
53, used to facilitate IP lease negotiation message passing. DHCP option 53
(titled ‘DHCP Message type’) is a one byte option appended to a DHCP packet

Chapter 4 Implementation 26

which indicates the purpose of that DHCP packet, e.g. a DHCP Discover or
Offer packet. By reading the DHCP packets option 53 value and the associated
UDP source and destination port numbers, the controller is able to determine
what the purpose of the packet is and can handle it accordingly.

The first thing the developed controller does is establish connectivity with the
DHCP server (using the mechanism outlined in Section 4.3) and maintains this
awareness of how to reach it. The developed controller operates reactively and
individually handles each subscriber’s IP negotiation process as the controller
receives packets forwarded to it from any switches for the purposes of flow
matching. Packets which are sent to the controller matching the criteria of
a DHCP Discover (DHCPD) packet initiate a DHCP handling process. This
process is depicted in Figure 4.1. First, the controller polls or queries any con-
nected AAA services (discussed in Section 4.2) in order to establish whether
the source MAC address of the received packet belongs to a valid subscriber
with a specified connection type (i.e. DHCP or VLAN). The AAA service is
expected to return a true or false value. If the MAC address is unknown to
the service, it is blacklisted and future packets from that MAC address are
subsequently dropped. If the subscriber ends up being valid, the AAA ser-
vice also returns the specified service type of that subscriber to the controller
for processing. Using this data, the controller is then able to create a flow
entry to facilitate that connection type. A corresponding DHCP flow entry
is specified in Table 4.1, which would be used to facilitate broadcast-based
communication between the subscriber and DHCP server. Of note is the UDP
source/destination port combination, which are used by the requesting client
to deliberately target DHCP servers listening on those ports as per the pro-
tocol specification. Once this control flow is established, the controller then
forwards the originally received DHCP Discover packet on to the DHCP server.

Ethernet Ethernet EtherType IP Protocol UDP source UDP dest.
source MAC dest. MAC port port

[subscriber source
MAC address] ff:ff:ff:ff:ff:ff 0x0800 [IP] 17 [UDP] 68 67

Table 4.1: Packet characteristics for matching DHCP control flow entry

Once the controller has facilitated broadcast-based communication between

Chapter 4 Implementation 27

Figure 4.1: Controlled DHCP session establishment process

the subscriber and the DHCP server using these control flows and forwarded
the intercepted DHCP Discover (DHCPD) packet to the server, the server
then continues with next stage of the IP lease negotiation process. With the
authenticity of the subscriber confirmed, the DHCP server is now free to reply
with a DHCP Offer (DHCPO) to the subscriber. The subscriber’s subsequent
DHCP Request (DHCPR) packet which is sent in response is automatically
sent through the existing control flow to the DHCP server. If something has
gone wrong, the very same control flow can be used to forward the DHCP
server a DHCP Decline packet (in the event of an IP address conflict) starting
the process again, or alternatively the DHCP server can send a DHCP Nak
to the client through the controller. However, assuming that everything has
gone correctly, the DHCP server should respond with a DHCP Acknowledge
(DHCPA) packet. A flow to automatically facilitate this DHCP Acknowledge
has been deliberately withheld at this point, so that the switch is forced to

Chapter 4 Implementation 28

forward the packet to the controller. A DHCP Acknowledge packet forwarded
to the controller indicates that the DHCP lease negotiation process is finalised
and the controller is able to create new flows that enable subscriber traffic to
be forwarded through to a edge IP router or wide area network (WAN). An ex-
ample of these WAN accessible flows are presented in Table 4.2. Additionally,
the control flows which initially facilitated the IP address lease are removed
from the flow tables as they are no longer required. Finally, the controller then
forwards the final intercepted DHCP Acknowledge packet to the subscriber to
finish the negotiation.

Flow Match fields Priority Actions
client-to-WAN in port=[subscriber accessible switch port], 100 output:[WAN

eth src=[subscriber source MAC address] accessible switch port]
WAN-to-client eth dst=[subscriber source MAC address] 101 output:[subscriber

accessible switch port]

Table 4.2: Example flow entry pair for subscriber WAN access

The controller deliberately does not retain the DHCP control flows that were
originally created to aid in the IP lease negotiation phase. If these control
flows were to be retained by any switches, the DHCP control flow count would
grow at the rate of (n*2) per subscriber, which is unsustainable for limited size
flow tables. However, the controller retains the ability to individually facili-
tate and forward additional DHCP control packets by way of specific handlers
constructed to handle certain DHCP packets on an isolated basis. An exam-
ple case of a packet which would have otherwise used an existing control flow
is the DHCP Release packet, which is a subscriber initiated mechanism for
surrendering a leased IP address. During the development of these mecha-
nisms, regular network operation was an assumption that was made. If the
assumption is correct and the bulk of the DHCP server’s activity is facilitating
new IP leases using control flows, then the remaining DHCP edge case packets
being forced to traverse through the controller (albeit at a much slower than
line-speed rate) is an acceptable compromise.

The installed WAN accessible flows are responsible for facilitating two way
communication between the WAN edge and the subscriber. They function as
‘catch all’ default flows for each subscriber in order to capture all subscriber

Chapter 4 Implementation 29

non-authentication/authorisation traffic and are subsequently assigned mod-
erately low priority values. As mentioned in Section 2.1, priorities can be used
to determine an order of precedence for a flow over another similar or partially
matched flow. A moderately low flow priority value means these WAN flows
are used when no more specific flows are installed. The WAN edge device end
point in this instance functions as the handover to a different network, and
is able to resolve the correct subscriber for any traffic destined to it by using
Address Resolution Protocol (ARP) to resolve the destination IP address to
the appropriate subscriber MAC address. A subscriber which reaches the state
of having associated installed WAN flows is considered to belong to a basic
WAN-accessible tunnel and therefore has internet or WAN access.

4.1.2 Virtual Local Area Network

By default, Ethernet frames which do not have deliberately tagged VLAN IDs
typically are tagged on VLAN ID 1, the standard default VLAN. The use of
multiple VLANs enables the division of the network into subsets of layer 2
broadcast domains, allowing administrators to reduce the total broadcast traf-
fic occurring on the network by limiting the areas in which broadcast traffic is
able to propagate. Administrators are able to append VLAN tags to Ethernet
frames by configuring specific switch ports to tag egress (outgoing) frames re-
ceived from a connected host with specific VLAN IDs. These same tags are
able to be stripped by the switch from ingress (incoming) frames destined for
the host in the opposite direction on the very same switch port. Ports with
this VLAN functionality are known as ‘untagged’ or ‘access’ ports. For in-
stance, an untagged frame coming from a host to a VLAN 10 access port will
be subsequently tagged with the VLAN 10 tag as it passes through the port.
If a VLAN 10 tagged frame attempts to reach the originating host from the
other side of that same switch port, the VLAN 10 tag is stripped from the
frame in order to be received by the host on the default VLAN (VLAN 1).
Other VLAN port configurations include the following:

• Tagged port
Tagged VLAN ports are ports which are able to pass Ethernet frames
with existing VLAN tags already appended to them intact without ma-
nipulating the tags themselves. These ports need to be configured to de-

Chapter 4 Implementation 30

termine which VLAN ID tagged frames may pass through them. Tagged
ports are often referred to as trunk ports, as often they often facilitate
switch-to-switch communication via uplink ports which permit the trans-
port of many different VLANs through the same port.

• Hybrid port
Hybrid VLAN ports are a combination of both access and tagged VLAN
ports. Hybrid ports allow the untagged port functionality for a specified
default VLAN (i.e., VLAN ID 1) and also the tagged port functionality
for other defined VLANs. For instance, a hybrid port may be configured
such that default untagged frames entering the port are tagged onto
VLAN 10, while at the same time the port allows free passage to those
frames which may already have VLAN ID tags 20 or 30. Commonly,
Voice over Internet Protocol (VoIP) VLANs are configured as hybrid
ports to support the ability to connect additional network hosts off of a
VoIP handset while retaining VLAN isolation.

Figure 4.2 gives a basic visual depiction of how the untagged port and tagged
port basic concepts can be applied to an actual switch with hosts. In this
example, ports 1-3 on both switch A and B are configured as ‘untagged’ for

Figure 4.2: Example of basic VLAN port configurations

Chapter 4 Implementation 31

their own colour-coded respective VLANs. Port 4 of each switch is configured
as a ‘tagged’ port and allows frames tagged with VLAN ID 10, 20 or 30 to tra-
verse the link between switches. In this example, assuming each PC is passing
untagged frames to the switch, PC A and PC D would be able to communicate
with each other in the isolated VLAN 10 broadcast domain network subset,
PC B and PC E in the VLAN 20 network, and finally PC C and PC F in the
VLAN 30 network.

In order to facilitate the configuration of switch ports in this project, the
controller has been supplemented by a VLAN configuration file which admin-
istrators are able to configure to specify the VLAN configuration for each of
the switch ports governed by that controller. The port configurations are ex-
tracted from a local .YAML configuration file and are parsed and applied by
the controller to their associated ports when the controller is first initialised
during start up. Using this configuration file, the controller is also able to
apply blanket catch all default VLAN configurations, as well port specific
VLAN-exclusions. This introduces a similar level of configuration capability
as is present in enterprise switches.

The current state of VLAN support in the controller is the ability for man-
aged switches to facilitate and pass VLAN tagged frames through specific
ports. The frames are intercepted and forwarded to the controller in exactly
the same way as regular frames. The controller possesses the ability to strip
(or pop) the VLAN tags from the frames and make decisions based on the
tag values accordingly. Using a subscriber service type awareness mechanism
(described in Section 4.2), the controller is able to subsequently create flow
rules to send traffic matching specific VLAN tag values to specific locations or
alternatively forward specific subscriber traffic based on the extracted VLAN
tags. Additional work is still required to fully implement support for packets
which are required to be forwarded on by the controller, in accordance with
the VLAN restrictions associated with each port. Additionally, the ability to
accommodate more complex VLAN configurations such as VLAN stacking us-
ing this controller is another feature that has not been able to be implemented,
and is discussed in Section 5.3.1.

Chapter 4 Implementation 32

4.2 Dynamic Flow Creation
In carrier networks, the typical role of AAA servers is to act as a security
architecture responsible for controlling and managing subscriber access to spe-
cific services (authentication, authorisation) and actively tracking the resources
that those subscribers are using (accounting). Two of the most common im-
plementations of AAA in carrier networks are RADIUS [20] and Diameter
[21]. In this project, a centralised subscriber information database was im-
plemented to interface with the developed controller in order to perform basic
AAA functions. Using this subscriber database allows the controller to extract
accurate information about known subscribers, their unique identifying con-
nection information, and how their incoming session establishment requests
should be handled by the controller and associated switching fabric. The con-
troller is able to use this information to structure the creation of flows to meet
the requirements of each subscriber, in a mechanism termed ‘dynamic flow
creation’. Dynamic flow creation enables the controller to query for the appro-
priate way to handle a given subscriber and then create flows to forward the
traffic of those subscribers according to their purchased or selected service. For
instance, the source MAC address from an intercepted packet can allow dy-
namic flow creation to facilitate the creation of flows to lease the subscriber an
IP address through DHCP or alternatively forward future layer 2 traffic from
that subscriber through a tunnel to a remote endpoint such as a satellite office.

The subscriber database was implemented as an Apache Cassandra [37] database.
Apache Cassandra is a NoSQL database, with practical advantages such as
support for high availability, scalability and real-time input/output. NoSQL
databases are a good fit for interfacing with network controllers given the ad-
vantages gained from simpler data structure designs, scale-out architectures
and operational agility when compared to traditional relational databases.
Apache Cassandra also supports a number of Python database drivers and
APIs, allowing Apache Cassandra to interface seamlessly with any controller
developed using Ryu. Apache Cassandra was specifically chosen for a proof of
concept subscriber database given it can easily scale to run across a cluster of
database instances on multiple physical hosts. In order to avoid reintroduc-
ing a SPOF into a developed SDN-enabled architecture this was an important
consideration and ensures high availability of the database, allowing Apache

Chapter 4 Implementation 33

Cassandra to scale to the production network requirements as necessary.

Different protocol header and data values can be extracted from unmatched
packets sent to the controller for governance. Using this data, controllers are
able to make decisions about how to accommodate or cater for future traffic
matching these packet criteria using flows, in accordance with what rules have
been explicitly defined inside the controller. By interfacing with a subscriber
database, the controller gains an extended awareness of how to handle specific
subscribers whose packets may not contain any special indicators which may
be used to individually determine the flows required for the subscriber. This is
especially important for an ISP, as subscribers may require a variety of differ-
ent services with varying levels of support. Introducing a subscriber database
allows network administrators not only to authoritatively control the ways in
which subscribers are handled from a centralised point, but also provides a
place to store relevant information about subscribers which may not have a
bearing on how their packets are managed, such as active connection informa-
tion. Furthermore, since flows are created based on the information extracted
from the database at flow creation time, administrators gain the additional
advantage of being able to update subscriber information without needing to
restart the controller to begin applying their changes. However, this carries
the caveat of not applying to any existing installed flows, only those which
are created after the change is made. Additionally, a centralised subscriber
database facilitates the construction of a database front-end portal which can
be used to make self-service or service desk changes easily.

4.3 Anonymous Unicast Host Detection
In order to accommodate limitations imposed on the project by the simula-
tion of a network in the lab environment, connectivity extensions were written
into the Ryu controller to allow the controller to maintain connectivity with
staticly connected hosts, i.e. a DHCP server or an IP router on the WAN
edge. These changes were necessitated by the presence of OVS in the net-
work topology rather than an actual real-world commodity switch. With a
commodity switch in a real world carrier network, network administrators are
able to maintain an awareness of how their networks are physically laid out,

Chapter 4 Implementation 34

including configurations for the ports which carry traffic to and from specific
appliances, servers or services. Using OVS and a virtualised host lab, this spa-
tial awareness was not always easy to achieve. Connected virtual hosts were
not consistently connected to persistent OVS virtual switch ports and in the
development environment often appeared to change port bindings dynamically.
Any flows which required the forwarding of packets to specifically targeted ap-
pliances needed an awareness of which virtual ports were associated with those
appliances. Subsequently, a reliable mechanism to bind these hosts to those
ports in order to facilitate those flows was required in the controller.

As briefly mentioned in Section 4.1.1 ARP acts as a layer 2 MAC-to-IP ad-
dress lookup, where a requesting host floods the layer 2 network to request the
identity or location of a host matching a specific IP address. The ARP request
propagates across the entire layer 2 network. If the requested host receives the
ARP request, they reply to the requesting host with the required information
in a specifically targeted response. This enables the creation of a binding of
the responding hosts MAC address to the requested IP address in the origi-
nal host’s ARP table. Additionally, since the response message traverses the
layer 2 network in order to reach the original host, any intermediary layer 2
switches between the hosts learn forwarding information about which switch
port best reaches which host (the newly identified host in addition to both the
requesting and responding hosts). ARP forms the basis of the host detection
mechanism in the controller developed for this project.

The resulting mechanism to bind dynamic ports to specific appliances func-
tions similarly to an anonymous unicast transmission. A unicast transmission
in this context is the sending of one-to-one messages to a specific network
destination as identified by a unique address. Using a generated unicast trans-
mission allows the controller to maintain port binding information about ap-
pliances which the controller and the switches are required to interface with.
The controller does this by binding switch ports in software to corresponding
hosts that generate specific protocol responses to an input. This approach
relies on sending an ARP packet from the controller across the layer 2 net-
work to target specific known appliances. Since the Ryu software controller
will not apply controller-specified rules to any packets destined for the con-
troller itself (as traffic targeting the controller specifically already matches an

Chapter 4 Implementation 35

Figure 4.3: Anonymous unicast flooded ARP request example

existing hidden control flow), the controller requires a mechanism to intercept
controller-destined traffic and handle it accordingly in software. The ARP
header of the flooded packet contains fictitious source MAC and IP addresses
in order to force the target host into responding with an ARP response to a
host who does not actually exist. Since the specified host does not exist, these
packets are forwarded to the controller instead. This allows the controller to
receive any ARP response packets generated by the targeted host upon receipt
of the original flooded ARP packet, as they are sent to fictitious addresses with
no corresponding flows to handle them. To the controller, these packets are
destined for a host for which a flow does not already exist and therefore are
sent into the software controller for a flow lookup. Subsequently, the controller
is able to determine which virtual port the targeted appliance has replied from,
and can save this information for later use. A depiction of this process is pre-
sented in Figures 4.3 and 4.4.

In Figure 4.3, the controller is flooding the original ARP request from the
directly connected switch and onto the layer 2 network. The crafted ARP
request contains information the network administrator already knows, such
as the destination IP and MAC address of the appliance that the controller
is targeting. Since the controller does not however know where this host is,

Chapter 4 Implementation 36

Figure 4.4: Anonymous unicast ARP response example

it spoofs the source MAC and IP address inside its ARP request to elicit an
ARP response to these addresses. This way, the controller can coerce the
targeted appliance to reply to the fictitious address, allowing the controller
to intercept the response. The controller recognises the spoofed destination
MAC and IP addresses and saves the port information associated with the in-
coming packet. The generated ARP response process is depicted in Figure 4.4.

The anonymous unicast mechanism would not be necessary in a real-world
environment. However, its development was required to accommodate the dy-
namic port allocation that was experienced with simulating layer 2 switches
and interconnected hosts. The anonymous unicast mechanism enables the
controller to deliberately and forcibly learn which virtual port specific appli-
ances can be accessed through. Without this mechanism, the controller would
only be able to learn about this port association if the appliance were to send
packets through a connected OpenFlow-enabled layer 2 switch for the first
time. Given that this project attempted to simulate a carrier network, only
having an awareness of where appliances lay in the network once they started
generating traffic on their own accord was considered an unnecessary session
establishment time delay.

Chapter 4 Implementation 37

It should be noted that there were a number of other OVS virtual port per-
sistence mechanisms discovered later in the development cycle of this project,
such as the ability to persistently bind virtual ports to virtual host interfaces
in the OVS underlying database. However, the implemented anonymous uni-
cast host detection mechanism still lends itself well to other circumstances. In
a complex OpenFlow-enabled network topology, a given controller is not able
to determine the port binding information for a virtual switch being governed
by a different controller. In that situation, any connection information for
that switch remains solely accessible to that controller. The anonymous uni-
cast host detection mechanism allows an administrator to expose the necessary
path for a given controller to take to reach a desired target host, irrespective
of the virtual switch that the host remains connected to.

Chapter 5

Evaluation and Discussion

5.1 Broadband Network Gateway Session
Aggregation

5.1.1 Dynamic Host Configuration Protocol

Evaluation

One problem with the implemented DHCP session establishment mechanism
is the lack of controller support for easily parsing extended DHCP options. In
order to facilitate the most basic IP lease negotiations, the only option that
was able to be supported in the controller was DHCP option 53, the DHCP
Message Type option. While the ability to parse other one byte options may be
easily implementable, any other appended DHCP options of a greater length
than one byte would require a new controller mechanism for that option to
be read or extracted by the controller individually. As a result, the ability to
support many important DHCP options which are used to establish IP leases
with specific, non-default properties and make subsequent forwarding decisions
based on that information is diminished. For instance, DHCP option 51 titled
‘IP address Lease Time’ is a four byte option which enables a DHCP server
to indicate inside a DHCP packet the time (in seconds) in which the client
is permitted a leased IP address before that lease expires and an IP address
renegotiation will need to take place. If this option were to be supported in the
controller, it could be used to populate subscriber flow expiration time frames
and allow flows to expire alongside the IP address lease they were originally
associated with. A renewal of the IP address lease would renew the flow tied
to it, which would automate the expiration of unused flows. In the meantime,

Chapter 5 Evaluation and Discussion 39

such flows need to be manually retired upon receipt of a DHCP Release packet.
Unfortunately, a number of hosts do not release their IP leases this way and
simply disconnect from the network, meaning that without an automated flow
expiration system a significant number of subscriber DHCP flows may exist
until manually removed.

The existing mechanism designed to handle DHCP traffic in this controller
lends itself well to the maintenance of authoritative subscriber information.
All DHCP server responses to the DHCP client pass through the controller
and, although this introduces some latency, it enables the controller to extract
IP lease negotiation data from the packets themselves. Session data obtained
in this way can subsequently be written into the database as a mechanism
of maintaining current up-to-date information on a subscribers active internet
session. The immediately implementable examples of client, server and gate-
way IP addresses come directly from the DHCP packet themselves. Each can
be helpful for administrators to monitor a particular subscriber session and
can be added to tools to aid with ISP operation, administration and man-
agement (OAM). In the instance of multiple network end points or multiple
DHCP servers, this extracted network information can allow an administrator
to gain an immediate view of which IP address is being used by a subscriber,
which server leased the IP address, and which network gateway the subscriber
traffic is being forwarded through. Additional subscriber session capabilities
and information can be further extracted if more flexible DHCP option han-
dling is implemented in the controller.

Discussion

There are improvements that could be made to the supported DHCP function-
ality in order to reduce latency associated with IP address lease negotiation.
Currently, each DHCP control flow which is used to forward subscriber DHCP
packets to the server are installed on an individual basis, pending a successful
outcome from a subscriber service type handler query made on the subscriber
database. A substantial speed improvement to flow creation could be realised
if there was single default catch-all DHCP control flow used to facilitate all
IP lease negotiation with a DHCP server. Using a single control flow would
save controller processing power, throughput and time on flow creation rates

Chapter 5 Evaluation and Discussion 40

(which as discussed in Section 3.1.1 is an inherent limitation of using the Ryu
controller). A single DHCP control flow would be able to forgo the creation
and deletion of DHCP control flows in quick succession for each DHCP client
as they attempt to lease an IP address through the controller. However, a
new mechanism which is able to differentiate between IPoE service subscribers
who are authorised to obtain an IP address through DHCP and those who
authenticate though a different mechanism (i.e. PPPoE) would need to be
implemented in the controller. This is an important security capability as it
uses OpenFlow flow creation to isolate subscriber traffic into specific flows and
allows administrators to ensure subscriber traffic is only permitted access to
those services or appliances which are required for them to gain WAN access.
Additionally, such an approach would see the loss of the controller’s ability to
manually expire flows based on the receipt of a DHCP Release packet. If the
DHCP Release packet is no longer received by the controller and instead is
forwarded immediately through to the DHCP server, deliberate IP lease ex-
piration will happen without the knowledge of the controller. Subsequently,
leases may expire independent of expiring the associated flows, which over
time may lead to flow tables filled with inactive, unused flows. Given the ad-
vantages of the installation of a single DHCP control flow, this avenue should
be investigated further. However, it would require the re-engineering of this
controller further to accommodate for the problems that it would introduce.

5.1.2 Virtual Local Area Network

Evaluation

One weakness of using a configuration file to determine individual VLAN port
configurations is the reduced ability to make dynamic changes to VLANs in
an OpenFlow-enabled network. This is because VLAN configurations are only
applied to specified ports at the time that the controller is originally initialised.
Subsequently, any changes to port specific VLAN configurations (either ma-
jor or minor) will require the entire controller to be re-initialised or restarted.
While this is not a substantial undertaking and only carries the disadvan-
tage of delaying flow creation by the time it takes the controller to restart,
it can make network administration problematic. Network administrators are
currently in the position to determine port configurations on any commod-
ity switches independent of other switches, and can immediately have those

Chapter 5 Evaluation and Discussion 41

changes applied in a production network environment. Although an authori-
tative controller architecture introduces the advantage of centrally managing
switches, the ability to easily deploy any changes immediately is lost. In order
to preserve both characteristics using the developed controller, a mechanism
would need to be implemented to allow the dynamic VLAN modification of
switch port configurations.

Unfortunately, full VLAN support that accommodates the preservation of
VLAN information when packets are intercepted and forwarded on by the
controller was not implemented. This feature would require the controller to
determine which ports or hosts specific received packets were permitted to be
forwarded to, based on the VLAN configuration of the port or host the packet
was received from and the port or host the packet was otherwise destined
for. This could be accomplished with some work by using the VLAN config-
uration file and a controller forwarding table to determine whether a packets
identifying characteristics would be permitted en route to its destination, as
well as what outgoing port VLAN configuration must be applied the Ethernet
frame encapsulating the packet. Additionally, greater support for more com-
plex functionality (i.e. 802.1ad VLAN stacking) could be implemented once
the VLAN support in both Ryu and OpenFlow is improved.

Discussion

Attempting to dynamically modify switch port VLAN configurations is more
difficult than it seemingly appears. It is not simply a challenge of discovering
the best way to deploy any port VLAN configuration changes to an active
controlled switch in a production network. The other important consideration
requiring investigation is how any VLAN configuration changes alter or im-
pact existing installed flows in the switch flow tables. Modification or removal
of VLANs from ports may prevent previously existing flows from successfully
forwarding packets through to specific end points. One way to accommo-
date this situation is a controller function which compares the existing flow
tables and determines where VLAN configuration changes will impact those
flows, triggering handler or modification events in response. Such events may
include immediately expiring previously matching flows by overwriting these
existing flows with identical flows with an immediately expiring flow timeout.

Chapter 5 Evaluation and Discussion 42

This would force the flows to be subsequently re-established via the controller,
which would be aware of the updated VLAN configurations. If any former
flows were still actively forwarding packets when they were forcibly expired,
they would be automatically re-established upon receipt of the first packet not
already matching a remaining flow. At this point the controller could receive
these packets and create new flows in accordance with the updated VLAN
configuration. Upon successful flow creation, regular operation would resume.

5.2 Dynamic Flow Creation
Evaluation

The subscriber database for dynamic flow creation is currently accessed di-
rectly through the controller. Depending on the flow-creation rate, this could
introduce a bottleneck in the developed architecture, especially since the con-
troller platform is currently not distributed. The controller would be required
to sequentially query the database a substantial number of times for each
unhandled subscriber packet that reaches it in order to accommodate flow cre-
ation for each associated subscriber. Given the poor throughput performance
of the Ryu controller in high rate flow creation tests [33], placing additional
operational strain on the controller by forcing it to interface with a subscriber
database on a flow-by-flow basis may further compound the performance prob-
lems. A potential solution is rewriting the controller logic to dynamically create
flows for all known subscribers during controller initialisation instead of during
operation. This in itself is not a perfect solution however as there is poten-
tial for the installation of flows to accommodate subscribers who may not be
currently active but none-the-less remain in the database. This additionally
results in increasing the number of flows being installed in flow tables. It may
be possible to use multiple fallback flow tables to accommodate these high
numbers of installed flows, but this requires further investigation. Further-
more, a mechanism would need to be developed to update the controller with
any new or modified subscriber handling conditions which may be inserted
into the database after the controller has already been initialised to ensure
flow tables and the database subscriber flows are synchronised.

Chapter 5 Evaluation and Discussion 43

Discussion

In a real world carrier network, there may not always be an authoritative sub-
scriber database from which to draw information about how to handle specific
subscribers. More commonly, this information can be sourced from existing
AAA services. The implemented subscriber database presented in this project
should be considered as a supplemental extra that accommodates the exchange
of information for large numbers of subscribers on a wide range of different ser-
vices. Depending on how subscribers are handled by their respective service
AAA server, a central subscriber database may help by introducing a central
point to manage subscribers across all services. Such an extension would al-
low a subscriber database to function as a modular add-on to existing AAA
services, while supporting subscriber management through a single authorita-
tive source. For instance, a subscriber database could interface with a DHCP
server to facilitate the leasing of static IP addresses that have been deliberately
specified in the database for a given subscriber. This configuration would be
applied to the DHCP server each time a change was made in the database
and would apply to subscribers once the subscriber made an IP address lease
request.

5.3 Project and Technology Limitations or
Difficulties

There were a number of limitations and difficulties discovered during the imple-
mentation of the project. These manifested as issues with the protocol support
of the simulation environment, technical limitations of the software controller
framework, and common developmental issues with documentation and bugs.
This section details these limitations and difficulties and their overall effect on
the project outcomes.

5.3.1 802.1ad VLAN Support

The OVS virtual switch is an ongoing work in progress which aims to en-
able network automation in a programmatic way, facilitating the innovation
of smarter ways for networks to operate by network operators and researchers

Chapter 5 Evaluation and Discussion 44

alike. Much like OpenFlow, new features and supported protocols are contin-
ually being introduced regularly into OVS with subsequent version updates.
However, one notable omission to the OVS framework as of the writing of
this report is support for the 802.1ad Ethernet standard [30], also known as
provider bridging, stacked VLANs, or Q-in-Q. The 802.1ad standard intro-
duces the ability to append multiple VLAN tags onto a single Ethernet frame
in a standardised way, allowing for more complex network topologies. Carrier
networks that support 802.1ad enable a service provider more flexible for-
warding capabilities such as the ability to separate, encapsulate and transport
customer VLANs across a service provider network without compromising the
ISPs network operation. Stacked VLANs is commonly used in carrier networks
to support metropolitan Ethernet configurations, much like the New Zealand
UFB Fibre network. Stacked VLANs also gives network operators the ability
to receive multiple VLAN-tagged Ethernet frames which can be used to distin-
guish the upstream provider, handover port or service that a given Ethernet
frame was received on. Subsequently, sequences of identifying VLAN tags can
be used to determine specific subscribers and the network path that their traf-
fic has taken to arrive at the ISP. A visual representation of this topology from
a UFB Retail Service Provider (RSP)’s perspective is provided in Figure 5.1.

Figure 5.1 depicts a point-to-point connection occurring over an optical fibre
access network. A CPE sits at the edge of the access network and acts as the
point-of-presence for the subscriber in the access network topology. Traffic that
leaves the CPE may be encapsulated with a customer VLAN identifier (CVID)
tag, meant to be handled at another remote location. An optical network unit
(ONU) switch aggregates the optical connections from each subscriber’s Op-

Figure 5.1: 802.1ad operation in an ISP network

Chapter 5 Evaluation and Discussion 45

tical Network Terminator (ONT) within in a common geographic area. Once
a session hits the ingress port of the ONU it is affixed with a Service VLAN
Identifier (SVID) or SVLAN tag. These sessions are then transported through
the local fibre carrier (LFC) network where decisions about where to forward
the traffic can be made at each of the intermediary access switches or Ethernet
aggregation switches (EAS) (based on the VLAN tags). Finally, frames from
the originating session are received at the RSP handover as doubly-tagged
SVID:CVID frames. These frames appear to the RSP at this point in the
configuration depicted in Table 5.1.

(8 Bytes) (6 Bytes) (6 Bytes)
Preamble Destination MAC Source MAC

... ff:ff:ff:ff:ff:ff de:ad:be:ef:00:00

(4 Bytes) (4 Bytes)
802.1q SVID Header 802.1q CVID Header
0x88a8 0x014d [333] 0x8100 0x0063 [99]

(2 Bytes) (n Bytes) (4 Bytes)
EtherType Payload CRC/FCS

0x0806

Table 5.1: Basic 802.1ad VLAN-stacked ARP packet

At this point, the traffic can be forwarded across the RSPs network to the
intended recipient. Using a series of tags in this fashion enables a BNG to pop
each tag individually and make subsequent decisions based on their values. For
instance, the BNG may have a series of rules to say that if the original CVID
tag is VLAN ID 1, then to treat it as regular traffic. Otherwise, if the CVID
tag matches a specific value, such as 99, to forward the frames to a specific
location. The ability for a developed system to accommodate 802.1ad for this
purpose is critical for service providers that provide point-to-point or WAN
solutions for subscribers.

Although OVS does support the ability to accommodate double-tagged frames
in a non-standardised pre-802.1ad way, this can lead to issues in some ISP
networks. Many LFC network handovers present egress frames to RSPs as
802.1ad frames, and due to 802.1ad compatibility issues, RSPs then modify
the 802.1ad VLAN header to convert it into a regular 802.1q VLAN header,

Chapter 5 Evaluation and Discussion 46

in order for that frame to be supported by the RSP network. Before a 2011
amendment, the 802.1q standard determined that in the tag control informa-
tion (TCI) portion of the VLAN header (between the EtherType and VLAN
ID), the bit immediately preceding the VLAN ID (called the Canonical Format
Indicator bit, or CFI) was used for indicating the compatibility of the tagged
frame for older legacy networks. In an Ethernet network, this bit would always
be set to 0. In 802.1ad, this same bit (now named the Drop Eligible Indica-
tor bit, or DEI) is used for a different purpose, namely determining whether
any QoS policy (in the preceding bits of the TCI) should be used to ascertain
whether frames are eligible to be dropped by a switch in the presence of net-
work congestion. In an ISP or RSP network with equipment conforming to the
pre-2011 802.1q VLAN standard, dynamically changing an 802.1ad header to
a 802.1q header in the aforementioned way can cause problems. If a network
administrator is not careful, changing an 802.1ad DEI bit into a 802.1q CFI
bit can cause any frame specific QoS policy to behave unpredictably. Given it
is common to use VLAN CLI bits to determine network segment QoS policy,
by conforming to the 802.1ad (or post 2011 802.1q) standard, OVS is able to
support this standardisation for network interaction between handovers.

We assume that real world switches will not be subject to the same inher-
ent VLAN restrictions that OVS currently is. While there are workarounds
to implement a VLAN configuration that supports multiple VLAN tags in a
similar mechanism to 802.1ad in OVS, these will not be necessary in a real
carrier network assuming the existence of modern layer 2 switching hardware.
The lack of support for the 802.1ad standard is an inherent limitation of using
OVS as the simulating layer 2 switching fabric for this project. Subsequently,
realistic and standardised ISP carrier network topologies using 802.1ad were
not able to be simulated for this project.

5.3.2 Controller Scalability

The Ryu controller framework does not currently support multi-threading.
This is an inherent limitation to the project as without being able to scale
across multiple CPU cores, the controller may be unable to keep up with the
throughput demands of a moderately sized carrier network. [33] demonstrated
that the Ryu controller framework was less suitable for enterprise deployment

Chapter 5 Evaluation and Discussion 47

after using throughput and latency metrics to determine whether Ryu was able
to scale to meet high network demands. These tests were performed across 32
switches with up to 100,000 hosts. The results indicated that the failure of
Ryu to accommodate these high numbers (when compared to other controller
frameworks) was a lack of multi-threaded capability. The best controllers sam-
pled in the same research were multi-threaded and outperformed Ryu due to
their incoming message thread dispatcher algorithms. These controllers saw
a higher degree of throughput performance as their CPU cores scaled to the
number of connected switches. Such a positive correlation is impossible to
achieve with the current iteration of Ryu as the number of CPU cores utilised
will always be one, no matter how many switches are being actively managed.
Subsequently, the use of Ryu to create a carrier network distributed BNG ar-
chitecture is not feasible due to Ryu’s inability to handle large numbers of
hosts and switches.

5.3.3 Controller Distributivity

As briefly discussed in Section 3.1.1, there does not currently exist any mech-
anism using the Ryu controller framework to achieve a truly distributed series
of OpenFlow controllers. Although there is some consolation in the ability to
introduce redundancy into the controlling framework by use of a master/slave
configuration and Zookeeper, a distributed controller framework would be
preferable to implement in order to address the controller scalability issues
as discussed in Section 5.3.2. A single Ryu controller possesses the ability
to access a single CPU core at any given time, but extending that capability
with a distributed series of Ryu controllers presents an opportunity to address
the challenges associated with using a single Ryu controller and typical carrier
network throughput. This is one reason why the lack of controller distributiv-
ity is a significant project limitation, as it continues to restrict the capability
to introduce a system which will scale appropriately to carrier network re-
quirements. Additionally, the ability to introduce distributivity into the Ryu
framework offers not only high availability, but also efficiency and speed ad-
vantages. While a prototype of a SDN-enabled distributed BNG architecture
is possible without controller distributivity, its omission is a notable limita-
tion of the capabilities of a new BNG architecture. The basic differences in
capabilities between a distributed controller model and a redundant controller

Chapter 5 Evaluation and Discussion 48

model are shown in Table 5.2.

High Implementation
Availability Scalability Speed Monitored Complexity

Distributed
Controllers x x x ? Very Complex
Redundant
Controllers x x Simple

Table 5.2: Distributed vs. redundant controller comparison

Table 5.2 indicates that distributed controllers introduce a greater feature set
than simple redundant controllers. Specific disadvantages of the Zookeeper-
facilitated redundant model are failures to address scalability of the system
(by having only a single controller handling all active subscriber flow creation
at any given time) and the inability to leverage speed increases by deploying
closer to the physical locations of the subscriber base, subsequently reduc-
ing flow creation and operational latency. These serve as limitations as the
developed controller will be much slower than the BNG appliance that it is
attempting to improve upon. The Zookeeper model does however offer the
ability for monitoring systems to gauge the health of a redundant controller
system through external event alerting which is helpful for system administra-
tion.

Creating a distributed controller framework using Ryu would be a large re-
search undertaking in its own right. Fortunately, there have been indications
that such research is currently under investigation. In the meantime, using
Ryu with Zookeeper appears to be the only current approach to high availabil-
ity, leaving remaining limitations unaddressed.

5.3.4 API Documentation

As is common when working with some APIs, the lack of extensive documen-
tation for various components and API calls of the Ryu controller was a source
of difficulty. The Ryu controller framework and codebase is documented well
and there is a lot of support available through various forums and mailing
lists. However, difficulties did arise when developing using software function-

Chapter 5 Evaluation and Discussion 49

ality that was not extensively documented and was only briefly mentioned in
official resources. This led to a trial and error, guess and check development
methodology for a period of time, which was not effective or productive. Specif-
ically, these difficulties affected the ability to easily de-capsulate the contents
of a packet such as both the headers and payloads of encapsulated datagrams,
as well as dynamically extract variably sized DHCP options from DHCP pay-
loads as noted in Section 5.1.1. Additional difficulties were experienced when
attempting to follow documentation that was not correct, leading to delays
when specific software controller functions or methods did not work as docu-
mented or expected. In some instances, the Ryu documentation was too vague
about specific implementation details, which necessitated referencing back to
the OpenFlow switch specification to understand why Ryu functioned the way
it did.

5.3.5 Bugs and Software Regression

Ryu and OVS are open source projects and attract much attention from a wide
audience. Contributors to these projects range from researchers and academics
to enterprise network architects and industry experts. While most interest in
the project is of substantial benefit to each respective development community,
it can lead to software bugs and regression. The basic definition of software
regression is a software bug which stops a feature of a system working after
some system event, such as an upgrade or patch. With such a large base of
contributors, it is easy for unintended behaviours to be programmed into soft-
ware by accident. This is despite the use of revision control systems and patch
acceptance policies associated with both the OVS and Ryu projects. Software
regression did unfortunately occur with the use of OVS in this project. The
apparent reintroduction of a bug in OVS caused difficulties with unpacking full
IP packet payloads. The problem manifested as the truncation of unbuffered
packets received by the Ryu controller framework which occurred when the
priority of the flow corresponding with the delivery of those packets was 0
(a priority value typically reserved for packets which do not match any other
flows, known as a ’table miss’). Unbuffered packets in this instance are those
packets which are deliberately sent fully intact to the controller for processing,
as opposed to buffered packets which only contain a limited portion of the
overall packet in order to increase controller processing efficiency. For spe-

Chapter 5 Evaluation and Discussion 50

cific protocol packets where there is required information after the observed
128 byte truncation point, this presented substantial development problems.
DHCP packets were particularly affected, as the DHCP header is variably
sized and a number of valuable variable length DHCP options are located in
the tail of that header. This was fixed by changing the priority value of the
corresponding DHCP traffic flows from 0 to any other priority. This bug was
subsequently re-reported to an OVS developer.

Chapter 6

Conclusions

6.1 Contributions Made
This project has investigated the ways in which OpenFlow may be used to im-
prove upon and address existing weaknesses and vulnerabilities in the existing
centralised BNG model. A basic design was implemented and presented that
offers software controller support for two basic subscriber session establishment
protocols. Additionally, a conceptual subscriber database was introduced to
improve the way in which session establishment protocols interface with AAA
services in order to dynamically forward subscriber traffic using OpenFlow.
Along with these proposed OpenFlow controller designs which address some
basic distributed BNG concepts, this project has also investigated a number
of approaches and limitations which may be used to realise a fully operational
OpenFlow-enabled distributed BNG solution in the future, as the technologies
involved mature.

6.2 Future Work
Given the scope of the implemented components of this project, there is a
large amount of subsequent work that can be carried out to develop a con-
troller framework capable of functioning as a distributed BNG and operating
a basic production carrier network. Many of these facets were not simply over-
looked during development, but remain as important considerations for future
work. Given the scope of a fully realised and implemented project capable
of replacing a network model as inherently complex and well-iterated as the

Chapter 6 Conclusions 52

BNG, much work remains to develop a fully working prototype. The discussion
of several of these remaining required components for developing a OpenFlow-
enabled distributed BNG are detailed below. Many of them may be able to
form the basis of projects such as this in their own right.

6.2.1 Additional Protocol Support

The OpenFlow protocol is a constantly evolving entity, which can be attributed
to the operational flexibility OpenFlow affords to network administrators and
the increased interest in network virtualisation. Given the interest in the
protocol and SDN concepts, new features and supported protocols are being
introduced into the standard on a regular basis. Subsequently, it is difficult
to predict whether any introduced future features may benefit the approaches
discussed in this project and, if they do, what the timespan to introduce those
features may be. At the time of writing this report, the OpenFlow version
1.5 specification was still being written, and version 1.4 is still not yet well
implemented. Open Networking Foundation (ONF) members have suggested
that this version of the specification will contain greater levels of support for
carrier network SDN, including support for carrier network OAM and the un-
derlying technologies that enable it [16]. Once version 1.5 of the standard is
supported in Ryu in full, it is possible that some of the underlying necessary
BNG supported protocols which are absent in existing OpenFlow specifications
(as discussed in Section 3.1.2) will be introduced in some capacity. This could
make an OpenFlow-enabled distributed BNG model for ISP carrier networks
more feasible by offering more complete support for the wide range of pro-
tocols required to support media-agnostic modern-day ISP carrier networks.
Other alternative options include the investigation or extension of the ROFL
library and bringing its capabilities to OpenFlow, OVS and Ryu. Access to
the protocols supported in ROFL could allow this project to further evolve
into a working prototype.

6.2.2 Flow Management and Operational Robustness

Networks have traditionally been able to operate dynamically and autonomously.
This is due to the fundamental concept of connectionless networking, which

Chapter 6 Conclusions 53

determines how the transmission of data is achieved between two network
end points for which no dedicated paths exist. It is an important concept
to consider when designing traffic flows as depending on the nature of the
flows, it is possible that specific network hosts are required to be traversed for
end-to-end connectivity. Additional work is required to retain this important
connectionless networking property and the overall operational robustness of
the developed system. Many of the flows created by a distributed BNG con-
troller will assume full end-to-end connectivity between network end points
and may be installed in flow tables of any intermediary devices as such. The
problem with this approach is the assumption that those hosts will remain up
and operational, given that if any of the intermediary devices between two end
points were to change or be lost, some end-to-end flows may fail to continue
to forward traffic correctly. A dynamic flow-based system will be necessary to
ensure the loss of any intermediary hosts in an end-to-end path does not affect
the ability for the system to function correctly and forward traffic accordingly.

In the context of subscriber sessions and any corresponding installed flows,
control mechanisms such as keep alives and timeout mechanisms still need to
be investigated. Each OpenFlow enabled device in a network topology will
have inherent restrictions on the maximum number of flows it is able to store.
Assuming that there is a positive correlation between the number of active sub-
scribers being aggregated through a distributed BNG and the number of flows
required to manage them, scaling to accommodate every single subscriber may
eventually be difficult. Subsequently, dynamic methods to manage sessions or
flows that are not currently active should be implemented. These methods
will ensure that subscribers who are not currently active are expired from the
system, using mechanisms such as DHCP lease expiration discussed in Section
??. A subscriber re-establishing a connection through the BNG system can
be facilitated each time from scratch with minimal extra effort, so there is no
problem with liberally expiring sessions.

Chapter 6 Conclusions 54

6.2.3 Additional Authentication, Authorisation and
Accounting Support

AAA servers in an ISP carrier network often operate as a function of the BNG
appliance itself or as an external appliance which the BNG connects to and
interfaces with. Since the BNG functions as a common aggregation point for
subscriber traffic, this is a sensible architecture. AAA servers are required to
authenticate and authorise subscribers with respect to permitted or accessible
network services, but also must account for the usage of those services by each
subscriber. The proof of concept AAA approach presented in Section 4.2 has
been designed as an authoritative subscriber database. While useful for mak-
ing dynamic traffic forwarding decisions, this database does not function as
an extension to existing AAA services, but rather as a supplemental service.
Substantial work is required to extend the developed controller AAA function
endpoints into a modular API-based design that allows for multiple protocols
to be supported, much like a BNG appliance would. Such an approach would
allow for the extensible support of different carrier network configurations with
a number of different AAA services. This subsequently would help accommo-
date varying kinds of production carrier networks present in modern day ISPs.

6.2.4 Complex Network Topologies

Aside from the technical limitations of this project that were discussed in Sec-
tion 5.3, there are a number of additional project components remaining which
would require development to fully realise a distributed BNG implementation.
Due to the developmental time constraints, expanded network topologies of
multiple layer 2 switches and upstream network endpoints were not tested or
evaluated during the development cycle. To support these topologies interme-
diary devices would need a way to determine the logical layout of the network,
as they would allow each OpenFlow-enabled switch to dynamically understand
how best to forward Ethernet frames to the correct end points. Additionally,
a large network of layer 2 switches more accurately represents an ISP carrier
network than the simple single switch topology used in the initial stages of the
development cycle. This single switch topology does not require OpenFlow-
enabled switch to switch communication, or introduce multiple upstream end-
points. Once the project demonstrates a capability to forward Ethernet traffic

Chapter 6 Conclusions 55

within a larger topology such as this, it would be closer to developing a solu-
tion which could be used in a basic production carrier network.

6.2.5 Real World Testing and Evaluation

An important component of developing a distributed BNG implementation
is the testing and evaluation of any developed solution on real-world hard-
ware with realistic production traffic. However, the use of different real-world
OpenFlow-enabled switches or production traffic flows may have the possibil-
ity of introducing unexpected or unhandled behaviours to the controller. A
well-structured and thorough evaluation of a variety of BNG use cases is a nec-
essary approach to evaluate the performance and practical feasibility of any
developed solution. Fortunately, OpenFlow is an enabler of such evaluations,
permitting the execution of experimental protocols and implementations on
real-world production networks alongside regular network operation [18]. Us-
ing such an abstract approach to evaluate experimental network modifications
enables network researchers and administrators alike to design comprehensive
unit-based tests for their experiments. These unit-based tests can be based
on any facet of the experiment design and, in the context of this project run-
ning on a carrier network, could be used to individually assess and evaluate
specific protocols, processes or functions of the developed implementation. Un-
fortunately, due to developmental time constraints, testing of this nature was
not carried out for this project. To measure the success of this project or any
of the approaches outlined in this report, real world testing would be necessary.

6.3 Conclusions
This project has focused on the operational flexibility provided to network
administrators by the use of OpenFlow, via its centralised software controller
architecture. Centralised software controllers provide the ability to dynami-
cally reconfigure switches in order to govern how traffic is forwarded, which can
be leveraged to explore and investigate potential solutions to shortcomings or
vulnerabilities in existing network protocols and models. Given the limitations
discussed, it is not currently possible to introduce a comprehensive, scalable
and complete distributed BNG solution using the OpenFlow controller software

Chapter 6 Conclusions 56

Ryu and OpenFlow version 1.3. However, some of the smaller controller de-
signs and concepts introduced in this project are suitable for governing session
establishment mechanisms in smaller network environments, and can act as a
starting point for future development of carrier-grade SDN components. The
shortcomings of developing a complete distributed BNG solution are due to the
lack of scalability and carrier-grade high availability as a result of the inability
to distribute the functionality of the Ryu software controller among multiple
controllers, as well as necessary session establishment and network communi-
cation protocols being not fully implemented in either OpenFlow or Ryu yet.
However, if these problems were to be addressed (or a different, more suitable
controller software framework chosen), the developed OpenFlow-enabled dis-
tributed BNG architecture would be viable.

References

[1] ATM End-to-End Working Group. Core Network Architecture Recom-
mendations for Access to Legacy Data Networks over ADSL (TR-025).
Technical report, Broadband Forum, September 1999.

[2] Biondi, P. Scapy. http://www.secdev.org/projects/scapy/, n.d. [Accessed
1 October, 2014].

[3] M. Davy, G. Parulkar, J. van Reijendam, D. Schmiedt, R. Clark, C. Tengi,
I. Sekar, P. Christian, I. Cote, and G. China. A Case for Expanding
OpenFlow/SDN Deployments On University Campuses. White paper,
Global Environment for Network Innovations, June 2011.

[4] J. Dix. Open Networking Foundation (ONF) Execu-
tive Director on the group’s achievements, goals. http:
//www.networkworld.com/article/2683312/opensource-subnet/
open-networking-foundation-onf-executive-director-on-the-groups-achievements-goals.
html, September 2014. [Accessed 30 September, 2014].

[5] D. Erickson. The beacon openflow controller. In Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Network-
ing, HotSDN ’13, pages 13–18, New York, NY, USA, 2013. ACM.

[6] Floodlight Contributors. Floodlight SDN OpenFlow Controller. https://
github.com/floodlight/floodlight, December 2011. [Accessed 28 September,
2014].

[7] Open Networking Foundation. Software-Defined Networking: The New
Norm for Networks. White paper, Open Networking Foundation, April
2012.

[8] Google Inc. Inter-Datacenter WAN with centralized TE using SDN and
OpenFlow. https://www.opennetworking.org/images/stories/downloads/
sdn-resources/customer-case-studies/cs-googlesdn.pdf, July 2012. [Ac-

http://www.secdev.org/projects/scapy/
http://www.networkworld.com/article/2683312/opensource-subnet/open-networking-foundation-onf-executive-director-on-the-groups-achievements-goals.html
http://www.networkworld.com/article/2683312/opensource-subnet/open-networking-foundation-onf-executive-director-on-the-groups-achievements-goals.html
http://www.networkworld.com/article/2683312/opensource-subnet/open-networking-foundation-onf-executive-director-on-the-groups-achievements-goals.html
http://www.networkworld.com/article/2683312/opensource-subnet/open-networking-foundation-onf-executive-director-on-the-groups-achievements-goals.html
https://github.com/floodlight/floodlight
https://github.com/floodlight/floodlight
https://www.opennetworking.org/images/stories/downloads/sdn-resources/customer-case-studies/cs-googlesdn.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/customer-case-studies/cs-googlesdn.pdf

References 58

cessed 1 June, 2014].

[9] P. Goransson and C. Black. Software Defined Networks - A Comprehensive
Approach, volume 1. Morgan Kaufmann, first edition, 2014.

[10] Open Source Software Computing Group. Ryu, component-based software
defined networking framework. http://osrg.github.io/ryu/, 2013. [Accessed
20 March, 2014].

[11] R. Groves and B. Benetti. Microsoft’s Demon - Datacenter Scale Dis-
tributed Ethernet Monitoring Appliance. Presented during Sharkfest ’12
- Wireshark Developer and User Conference, Berkeley, California, 2012.

[12] C. Hellberg, D. Greene, and T. Boyes. Broadband Network Architectures
- Designing and Deploying Triple-Play Services, volume 1. Prentice Hall,
first edition, 2007.

[13] M. Kind, F. Westphal, A Gladisch, and S. Topp. Splitarchitecture: Apply-
ing the software defined networking concept to carrier networks. In World
Telecommunications Congress (WTC), 2012, pages 1–6, March 2012.

[14] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix: A
distributed control platform for large-scale production networks. In Pro-
ceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 1–6, Berkeley, CA, USA, 2010. USENIX
Association.

[15] libpcap Contributors. the LIBpcap interface to various kernel packet cap-
ture mechanism. https://github.com/the-tcpdump-group/libpcap, October
1999. [Accessed 1 October, 2014].

[16] B. Mack-Crane. OpenFlow Extensions. Presented during the 2013 ONF
and US-Ignite SDN Workshop, Sunnyvale, California, October 2013.

[17] C. Matta. Users Equal Distribution on Multi-PPPoe Servers - Using
RouterBoard and RouterOS. Presented during the 2012 Mikrotik User
Meeting, Dubai, UAE, August 2012.

[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: Enabling Innovation
in Campus Networks. White paper, Open Networking Foundation, March

http://osrg.github.io/ryu/
https://github.com/the-tcpdump-group/libpcap

References 59

2008.

[19] NEC Corporation. Case Study - Kanazawa University Hospital.
https://www.opennetworking.org/images/stories/downloads/sdn-resources/
customer-case-studies/cs-nec.pdf, 2012. [Accessed 28 September, 2014].

[20] Network Working Group. Remote Authentication Dial In User Service
(RADIUS). Request for comments, Internet Engineering Task Force, June
2000.

[21] Network Working Group. Diameter Base Protocol. Request for comments,
Internet Engineering Task Force, September 2003.

[22] Open Networking Foundation. OpenFlow Switch Specification — Version
1.0.0 (Wire Protocol 0x01). Specification, Open Networking Foundation,
December 2009.

[23] Open Networking Foundation. OpenFlow Switch Specification — Version
1.1.0 (Wire Protocol 0x02). Specification, Open Networking Foundation,
February 2011.

[24] Open Networking Foundation. OpenFlow Switch Specification — Version
1.2.0 (Wire Protocol 0x03). Specification, Open Networking Foundation,
December 2011.

[25] Open Networking Foundation. OpenFlow Switch Specification — Version
1.3.0 (Wire Protocol 0x04). Specification, Open Networking Foundation,
June 2012.

[26] Open Networking Foundation. OpenFlow Switch Specification — Version
1.3.2 (Wire Protocol 0x04). Specification, Open Networking Foundation,
April 2013.

[27] Open Networking Foundation. OpenFlow Switch Specification — Version
1.4.0 (Wire Protocol 0x05). Specification, Open Networking Foundation,
October 2013.

[28] Open Networking Foundation. Extensibility. https://www.opennetworking.
org/working-groups/extensibility, 2014. [Accessed 30 September, 2014].

[29] OpenDaylight Contributors. OpenDaylight — A Linux Foundation Col-
laborative Project. http://www.opendaylight.org/, 2014. [Accessed 28
September, 2014].

https://www.opennetworking.org/images/stories/downloads/sdn-resources/customer-case-studies/cs-nec.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/customer-case-studies/cs-nec.pdf
https://www.opennetworking.org/working-groups/extensibility
https://www.opennetworking.org/working-groups/extensibility
http://www.opendaylight.org/

References 60

[30] B. Pfaff. Open vSwitch Manual. Manual, Open vSwitch, n.d. [Accessed
5 October, 2014].

[31] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker.
Extending networking into the virtualization layer. In 8th ACM Workshop
on Hot Topics in Networks (HotNets-VIII). New York City, NY (October
2009).

[32] RYU project team. RYU SDN Framework - Using OpenFlow 1.3. Open
Source Software Computing Group, 2014. [Accessed 1 October, 2014].

[33] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky.
Advanced study of sdn/openflow controllers. In Proceedings of the 9th
Central & Eastern European Software Engineering Conference in Russia,
CEE-SECR ’13, pages 1:1–1:6, New York, NY, USA, 2013. ACM.

[34] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester. Soft-
ware defined networking: Meeting carrier grade requirements. In Local
Metropolitan Area Networks (LANMAN), 2011 18th IEEE Workshop on,
pages 1–6, Oct 2011.

[35] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker. Applying nox to the
datacenter. In Proc. of workshop on Hot Topics in Networks (HotNets-
VIII), 2009.

[36] Agilent Technologies. Understanding DSLAM and BRAS Access Devices.
White paper, Agilent Technologies, February 2006.

[37] The Apache Software Foundation. The Apache Cassandra Project. http:
//cassandra.apache.org/, 2009. [Accessed 6 August, 2014].

[38] The Apache Software Foundation. What is Zookeeper? http://zookeeper.
apache.org, 2010. [Accessed 1 October, 2014].

[39] The Architecture and Transport Working Group. DSL Evolution - Archi-
tecture Requirements for the Support of QoS-Enabled IP Services (TR-
059). Technical report, Broadband Forum, September 2003.

[40] The Architecture and Transport Working Group. Broadband Remote Ac-
cess Server (BRAS) Requirements Document (TR-092). Technical report,
Broadband Forum, August 2004.

[41] The Architecture and Transport Working Group. Migration to Ethernet-

http://cassandra.apache.org/
http://cassandra.apache.org/
http://zookeeper.apache.org
http://zookeeper.apache.org

References 61

Based DSL Aggregation (TR-101). Technical report, Broadband Forum,
April 2006.

[42] The SPARC Consortium. SPARC - Split Architecture Carrier Grade Net-
works. http://www.fp7-sparc.eu/, n.d. [Accessed 2 October, 2014].

[43] A. Tootoonchian and Y. Ganjali. Hyperflow: A distributed control plane
for openflow. In Proceedings of the 2010 Internet Network Manage-
ment Conference on Research on Enterprise Networking, INM/WREN’10,
pages 3–3, Berkeley, CA, USA, 2010. USENIX Association.

[44] Trema Contributors. Full-Stack OpenFlow Framework in Ruby and C.
https://github.com/trema/trema, April 2011. [Accessed 28 September,
2014].

[45] H. Woesner and D. Fritzsche. Sdn and openflow for converged access/ag-
gregation networks. In Optical Fiber Communication Conference and Ex-
position and the National Fiber Optic Engineers Conference (OFC/N-
FOEC), 2013, pages 1–3, March 2013.

http://www.fp7-sparc.eu/
https://github.com/trema/trema

	Front Matter
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Acronyms

	Introduction
	Background
	Software Defined Networking and OpenFlow
	Broadband Network Gateway
	Implementation Tools
	Open vSwitch
	Ryu

	Investigation
	Software Defined Networking and OpenFlow Technologies
	High Availability
	Protocol Support

	Broadband Remote Access Server
	Current Dependency Reduction Strategies
	Software Defined Networking and OpenFlow Solutions

	Implementation
	Broadband Network Gateway Session Aggregation
	Dynamic Host Configuration Protocol
	Virtual Local Area Network

	Dynamic Flow Creation
	Anonymous Unicast Host Detection

	Evaluation and Discussion
	Broadband Network Gateway Session Aggregation
	Dynamic Host Configuration Protocol
	Virtual Local Area Network

	Dynamic Flow Creation
	Project and Technology Limitations or Difficulties
	802.1ad VLAN Support
	Controller Scalability
	Controller Distributivity
	API Documentation
	Bugs and Software Regression

	Conclusions
	Contributions Made
	Future Work
	Additional Protocol Support
	Flow Management and Operational Robustness
	Additional Authentication, Authorisation and Accounting Support
	Complex Network Topologies
	Real World Testing and Evaluation

	Conclusions

	References

